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Functional trait composition is increasingly recognized as key to better understand 
and predict community responses to environmental gradients. Predictive approaches 
traditionally model the weighted mean trait values of communities (CWMs) as a 
function of environmental gradients. However, most approaches treat traits as inde-
pendent regardless of known tradeoffs between them, which could lead to spurious 
predictions. To address this issue, we suggest jointly modeling a suit of functional traits 
along environmental gradients while accounting for relationships between traits. We 
use generalized additive mixed effect models to predict the functional composition of 
alpine grasslands in the Guisane Valley (France). We demonstrate that, compared to 
traditional approaches, joint trait models explain considerable amounts of variation 
in CWMs, yield less uncertainty in trait CWM predictions and provide more realistic 
spatial projections when extrapolating to novel environmental conditions. Modeling 
traits and their co-variation jointly is an alternative and superior approach to pre-
dicting traits independently. Additionally, compared to a ‘predict first, assemble later’ 
approach that estimates trait CWMs post hoc based on stacked species distribution 
models, our ‘assemble first, predict later’ approach directly models trait-responses along 
environmental gradients, and does not require data and models on species’ distribu-
tions, but only mean functional trait values per community plot. This highlights the 
great potential of joint trait modeling approaches in large-scale mapping applications, 
such as spatial projections of the functional composition of vegetation and associated 
ecosystem services as a response to contemporary global change.

Introduction

For decades, community ecology has sought general principles that govern how species 
vary in space and time and in response to environmental gradients. The failure to 
arrive at such principles has led to considerable concern, and is caused in part by the 
inherently complex nature of communities (Lawton 1999, Simberloff 2004). However, 
this complexity can be tackled by using functional traits of organisms (McGill et al. 
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2006). Functional traits constitute quantifiable properties 
that influence individual’s performance and as such can help 
to understand and predict community structure along envi-
ronmental gradients, an approach which can conveniently be 
applied to the increasingly large functional datasets as they 
become available (McGill  et  al. 2006, Violle  et  al. 2007). 
Beyond the link to community assembly and composition, 
functional traits can also be used to infer ecosystem func-
tions (Garnier  et  al. 2004) and associated services (Lavorel 
and Garnier 2002, Lavorel and Grigulis 2012), which 
makes studying functional traits and/or their distribution 
along environmental gradients informative and important 
for environmental change research (Lamarque  et  al. 2014, 
Lavorel et al. 2015).

How to analyze and map the functional structure and 
composition of communities along environmental gra-
dients and how they potentially change across space and 
time due to global change has been an important area of 
research. Two alternative approaches have been used so far. 
One approach consists of first predicting species distribu-
tions as a function of environmental variables to produce a 
stack of species distribution maps that are subsequently used 
to reconstruct spatially explicit trait compositions (“predict 
first, assemble later”; Ferrier and Guisan 2006). In a second 
approach, community-level or grid-based trait composition 
is directly modeled in relation to environmental predictors, 
and the model is then used to provide predictions over space 
and time (“assemble first, predict later”; Ferrier and Guisan 
2006). In the former approach, the use of species distribu-
tion models (SDMs) in trait-based ecology enables one to 
project species distributions across space and time (Buis-
son  et  al. 2013, Thuiller  et  al. 2015), but the quantifica-
tion of trait composition is done post hoc. In other words, 
structure and composition of functional traits in commu-
nities is treated as an emergent property of assembled spe-
cies and is not modeled per se. An important drawback of 
this SDM-stacking approach is that it requires a minimal 
number of observations per species, which can drastically 
restrict the number of species retained in the analysis and 
hence bias ad hoc calculation of community weighted mean 
traits. Another limitation of the ‘predict first, assemble 
later’ approach is that species are modeled independently 
assuming that biotic interactions between species do not 
feed back on the functional trait structure of communities. 
Recent approaches such as modeling species simultaneously 
(Clark  et  al. 2014, Pollock  et  al. 2014, Harris 2015) and 
accounting for multiple interacting traits and environmental 
gradients (Pollock et al. 2012, Jamil et al. 2013, Brown et al. 
2014) have the potential to improve the predictions of com-
munity composition beyond independent species models, 
and in doing so, improve estimates of trait composition 
across space. However, this new generation of approaches 
to model species distributions are computationally demand-
ing when large numbers of species are involved and focus 
on how species, rather than traits, respond to environmental 
change.

By focusing on traits rather than species, the latter approach 
(‘assemble first, predict later’) is more explicit on directly 
modeling community-level trait characteristics in relation 
to environmental variables (Kühn et al. 2006). The average 
trait value of a community, weighted by the relative abun-
dance of the species (community weighted mean, CWM) has 
been extensively used to study the functional trait structure 
of communities (Díaz  et  al. 2007) and how this structure 
affects ecosystem functioning (Garnier et al. 2004). The ever-
increasing availability of trait data (e.g. TRY;  www.try-db.
org , BIEN;  http://bien.nceas.ucsb.edu/bien ) allows 
us to now study how multiple traits respond to environmen-
tal gradients and how they influence ecosystem functioning. 
However, current approaches are so far limited to estimating 
statistical relationships of such CWMs along environmen-
tal gradients independently for multiple traits (Bernard- 
Verdier et al. 2012, Widenfalk et al. 2015). While appealing, 
this practice can be problematic given that traits are not inde-
pendent of each other but rather exhibit functional relation-
ships (e.g. tradeoffs) within and between species (Díaz et al. 
2004, Boucher et al. 2013). One of the most prominent exam-
ples is the leaf economic spectrum of plants, which is defined 
along a gradient of short-lived leaves with low dry mass per 
area that exhibit a high photosynthetic capacity on one end to 
long-lived heavy and small leaves that are photosynthetically 
inefficient on the other end (Wright  et  al. 2004). Another 
example is plant height, which is positively correlated with 
tissue density, as taller plants need mechanical stability of 
denser tissue to avoid breakage (Niklas 1993). Without this 
constraint, trees could at the same time get taller and become 
less dense with increasing temperature because they suffer less 
from freezing-induced cavitation. Naturally, this is not the 
case because of the trade-off between height and tissue den-
sity. In case tradeoffs scale up, an ‘assemble first, predict later’ 
approach that models the CWM of traits independently will 
not consider trait tradeoffs and could yield erroneous models 
and predictions. This is analogous to the problem in species 
distribution modeling, in which independent species models 
ignore potential interactions between species.

In this paper, we argue that the ‘assemble first, predict 
later’ approach could be substantially improved by model-
ing traits jointly and considering the correlation structure 
between traits. In comparison to ‘predict first, assemble later’, 
it offers the possibility of predicting multiple traits at the 
same time without computational constraints (modeling ten 
traits is less computationally intensive than modeling 1000 
species) and directly links traits to ecosystem functioning. To 
do so, we suggest the use of multivariate mixed effect models 
as a powerful approach to model joint responses of traits (or 
their community weighted means) along environmental gra-
dients. Specifically, we do this by adapting recent approaches 
of jointly modeling species distributions to jointly model 
traits along environmental gradients, and compare the per-
formance of models that model traits independently to those 
that model multiple traits simultaneously, and a joint trait 
model that explicitly accounts for correlations between traits. 

http://www.try-db.org
http://www.try-db.org
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We hypothesized that joint trait models should provide more 
robust and more ecologically meaningful predictions than 
independent trait models. Further, we investigate the useful-
ness and advantages of the joint modeling approaches when 
projecting functional composition of communities in space. 
We here hypothesized that joint trait modeling would reduce 
projection uncertainty, especially when accounting for trait 
correlations, as this should prevent predicting communities 
with ecologically unrealistic trait combinations. 

Material and methods

Community plots and trait data

We used extensive vegetation survey data from the French 
National Botanical Alpine Conservatory (Conservatoire 
Botanique National Alpin; CBNA) that spans the entire 
French Alps. CBNA plots were surveyed between 1980 and 
2015 in homogeneous patches of vegetation with an aver-
age area of 100 m2. Species nomenclature was standardized 
according to the ‘Index synonymique de la flore de France’ 
(Kerguélen 1993). Relative abundance within a survey plot 
was recorded on an ordinal scale of percentages with cut-
offs at 1%, 5%, 25%, 50%, 75% (with cutoff-values being 
assigned to the lower class), resulting in six abundance classes. 
We used the mean of each abundance-class to represent the 
relative abundance of each species in a local plot survey.

Our study area to model trait responses along environ-
mental gradients was the grasslands of the Guisane Valley 
(Fig. 1), which are situated along steep climatic gradients. 
The valley is 25 km long and characterized by mean annual 
temperatures ranging from –8.2°C to 7.8°C. We chose to 
restrict our study case to the grassland survey-plots of this 
Valley because a relatively small number of plots ameliorates 
interpretation of results and cuts computational effort, and 
because modeling non-linear changes across ecotones, e.g. 
from grasslands to forest, would not be informative for the 
aims of our study. Therefore, we included only survey plots 

characterized as grasslands according to the CORINE land-
cover data (European Environment Agency 2013). Conse-
quently, our analyses included only observations from the 
herbaceous layers of the plots (i.e. shrub and tree saplings 
were excluded before analysis). For each plot in the Guisane 
Valley, we extracted relative abundance of all occurring  
species from the CBNA database.

For each of the species, we extracted individual-level mea-
surements for four traits: plant height (Height, mm), seed 
mass (Seedm, mg), leaf dry matter content (LDMC, mg g–1), 
and specific leaf area (SLA, m2 kg–1). Height, Seedm and 
SLA were chosen to represent the leaf-height-seed (LHS) 
plant strategy scheme, which depicts general plant life strat-
egies (Westoby 1998). LHS traits are especially well-suited 
for our study because the LHS encompasses trait tradeoffs 
both within and between traits (Westoby 1998), leading to 
well-documented correlations among LHS traits (Díaz et al. 
2015). We included LDMC in our study because LDMC is 
likely negatively correlated with SLA. Traits were extracted 
mostly from our own database of trait measurements in the 
Alps (Thuiller et al. unpubl.), complemented with data from 
LEDA (Knevel et al. 2003), BioFlor (Kühn et al. 2004), Eco-
flora (Fitter and Peat 1994) and CATMINAT (Julve 1998). 
The individual-level trait measurements with a mean of 4.1 
( 1.5) observations per species were averaged to obtain a 
mean trait value for each species.

Some species were missing trait data, so we restricted the 
dataset used in our analyses to only those plots where at least 
80% of the plot was covered by species with complete trait 
information. This is justified by the biomass ratio hypoth-
esis postulating that community level traits and functions are 
determined by species that dominate the biomass of a com-
munity (Grime 1998). Based on this selection, we used 108 
plots and 432 species overall. For each plot, we calculated the 
community weighted mean (CWM) trait value for each of 
the four traits. CWM averages species level traits weighted 
by abundance. We first log-transformed CWMs in order to 
approximate a normal distribution of the data and then stan-
dardized the CWMs (each trait separately) by subtracting the 

Figure 1.  Study regions and plot data used in this study. The French Alps in (a) with an inset map showing where the study region is located 
within France. The white area in (a) depicts the location of the Guisane valley as shown in (b), with the locations of the 108 grassland plots 
included our study.
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arithmetic mean and dividing by the standard deviation in 
order to facilitate convergence of the models.

Modeling traits along environmental gradients

We selected ecologically meaningful topo–climatic variables 
at a spatial resolution of 100  100 m that have previously 
been shown to be important to explaining the functional 
structure of the Guisane Valley vegetation (de Bello  et  al. 
2013, Chalmandrier et al. 2015). The set of variables included 
mean annual precipitation (MAP, mm), coldest temperature 
(TMIN, °C), relative humidity (RELH, %), and topographic 
position (TOPO). The climatic variables were derived from 
downscaling the gridded 1km climate data from MeteoFrance 
(Benichou and Breton 1987) in the case of MAP and TMIN, 
and from global CRU data (New et al. 2002) in the case of 
RELH. Topographic position assesses concavity vs. convex-
ity of a given location with respect to the surrounding land-
scape, with positive values indicating that the focal pixel is 
higher than the surrounding (vice versa for negative values). 
We chose these predictors from a larger set of environmental 
variables to minimize collinearity (all Pearson’s correlations 
0.55) and maximize ecological interpretation. We scaled 
the predictor variables by subtracting the mean and dividing 
by the standard deviation prior to model-fitting. 

We investigate whether joint modeling, and accounting 
for correlation structure improves the estimation of trait–
environment relationships by comparing independent trait 
models (ITMs) with a multiple trait model (MTM) and a 
joint trait model (JTM) that explicitly accounts for correla-
tions between traits. While large-scale analyses inform on the 
general direction of some traits along some of the selected 
environmental gradients (Wright  et  al. 2004, Poorter  et  al. 
2009), there are no well-defined theoretical expectations 
about the exact shape (e.g. linear, curvilinear, exponential) 
of the response of the four traits to our local environmental 
gradients. We thus used generalized additive models (GAMs) 
that do not require predefined response curve shapes along 
predictor variables (Hastie and Tibshirani 1990). They use a 
class of equations called ‘smoothers’ that attempt to general-
ize data into smooth curves by local fitting to subsections of 
the data. More technically, we used thin plate regression to 
estimate the smoothers for the four predictor variables and 
a tensor product to generate a smoother for an interaction 
term between MAP and TOPO to account for the fact that 
effects of precipitation may change with topography due to 
differential water retention on ridges versus in depressions. 
The thin plate and tensor product smoothers were estimated 
using the mgcv package (Wood 2011) in the R statistical 
environment (ver. 3.3.2;  www.r-project.org ). A poten-
tial downside of GAMs is that they sometimes overfit, i.e. the 
estimated response could get very close to the data and poten-
tially ignores biological realism. We minimized overfitting by 
allowing for a maximum of five degrees of freedom in the 
smoothers to avoid overly complex responses. In addition, 
we also fitted GLMs with linear and quadratic terms for all 

predictors (and including the interaction between MAP and 
TOPO) to test whether ITM performance was influenced by 
the flexibility of response curves in GAMs.

In the ITM approach, we modeled traits independently 
of each other, as traditionally done in functional ecology 
(Bernard-Verdier et al. 2012, Widenfalk et al. 2015). In the 
simplest case of one predictor variable, the model equation 
for one trait would be as follows:

y b f xi i i= + ( ) + ε 	  (1)

where each element of the response yi is the CWM of a trait 
in plot i, b is an intercept and f represents the smooth term of 
a predictor variable x. εi represents the Gaussian residuals. In 
the case of several predictors Eq. 1 extends to:

y b f xi p ip i= + ( ) + ε 	  (2)

where fp indicates the predictor-specific smooth terms. The 
model equation for the MTM and JTM further extends Eq. 
2 to:

y b f xij j pj ipj ij= + ( ) + ε 	  (3)

where bj indicates a specific intercept for each trait, fpj indi-
cates that for each predictor p a distinct smooth is fitted for 
each trait j. Technically, trait-specific responses are achieved 
by trait-specific random effects on the smooth-term param-
eters, leading to:

y b f x uij j i pj ij= + ( ) + + ε 	  (4)

where upj represents the random effects that enable the 
model to fit specific smoothers for each trait j along each 
predictor p. Random effects for each smoother in the MTM 
are constrained to stem from a normal distribution with 
expected value zero. The JTM additionally accounts for 
between-trait correlation by fitting an unstructured corre-
lation structure on upj with a different parameter for every 
possible pair of traits.

The ‘mgcv’ package allows one to fit ITMs, MTMs and 
JTMs and we include the code to fit these models in the 
Supplementary material Appendix 2. Note that the correla-
tion structure needs to refer to plotID, a factor with a unique 
ID for each of the i plots and its form has to be symmet-
ric (corSymm) in order to obtain a pair-wise between-trait 
correlation structure.

We assessed goodness of fit in both approaches using root 
mean square error (RMSE) of predicted versus observed trait 
CWM-values, and R2 of the regression between predicted 
and observed values (R2

CORR). For both measures, we calcu-
lated a pooled value where the pooled predicted values of all 
four traits were compared to the pooled observations of all 
traits and a trait-specific value where we compared predicted 

http://www.r-project.org
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versus observed values separately for each trait. Further, as 
commonly done for SDMs, we applied a repeated split-sam-
pling procedure to assess performance of the models. The 
split-sampling procedure consisted of a random splitting of 
original data into two thirds training and one third testing 
data, with 20 repetitions. Thus, in each repetition the models 
were fitted on training data, and evaluated against the testing 
data. Analogous to the full-model comparison, we evaluated 
model performance in the split-sampling procedure by assess-
ing RMSE and R2

CORR on the hold-out testing data pooled 
across the four traits and the 20 repetitions. In addition, we 
compared the correlation structure as estimated in the JTM 
with the observed correlation between trait CWMs in the 
Guisane Valley plots in terms of RMSE and bias (mean of 
predicted minus observed).

Trait–environment relationships

We produced partial response curves along the environmen-
tal gradients for all traits in order to facilitate identification 
and interpretation of differences between the modeling 
approaches. The partial response curve of a trait along a 
predictor variable describes how a trait changes along that 
variable and is produced by calculating the trait’s predicted 
values along the focal variable, while keeping all other 
variables fixed at their mean.

Spatial projections

We used the fitted ITMs and JTMs built from the sampled 
communities to project the spatial distribution of each  
trait over the whole Guisane valley at a spatial resolution 
of 100  100 m. We assess the plausibility of predictions 
by comparing the range of observed trait CWMs with 
predictions from both the ITM and JTM approaches.

Data deposition

Data available from the Dryad Digital Repository:  http://
dx.doi.org/10.5061/dryad.v475g  (Wüest et al. 2017).

Results

Trait–environment relationships – model comparison

All models (ITMs, the MTM and the JTM) explained con-
siderable amounts of variation in CWMs (R2

CORR 0.31). 
ITMs performed best when assessing performance by com-
paring predicted and observed data across all traits. RMSE 
across ITMs (0.73) was lower than RMSE of the MTM 
(0.80) and the JTM (0.83), indicating that ITM predic-
tions best approximated the observed trait values, corrobo-
rated by a higher R2

CORR (0.47 across all ITMs versus 0.35 
for the MTM and 0.31 for the JTM; Table 1). Differences in 
trait-specific RMSE of the independent models of the ITM 
approach indicate that vegetation height (0.63) and seed mass 
(0.57) are potentially more strongly driven by our selected 

environmental variables than LDMC (0.82) and SLA (0.86). 
A complete comparison of trait-specific RMSE and R2

CORR 
values is provided in Supplementary material Appendix 1 
Table A1.

Assessing the predictive performance using repeated 
split-sampling revealed that ITM’s performance collapsed 
markedly, where RMSE increased to 1.20 and R2

CORR 
decreased to virtually zero. In contrast, predictive perfor-
mance of the joint models did not decrease analogously in 
the split-sampling validation. The increase in RMSE was at 
highest 24% (for MTM; 19% for JTM; Table 1) and much 
lower compared to the ITM (where RMSE increased by 
64%). R2

CORR of the JTM approach was reduced by 68% (for 
JTM; 69% for JTM; Table 1) in the split-sampling procedure 
but was far from approaching zero, as observed in the ITM 
approach. Improved predictive performance of a JTM based 
on GLMMs was comparable to the presented results based 
on GAMMs and are reported in Supplementary material 
Appendix 1 Table A2.

We compared the pair-wise correlation between traits as 
estimated by the JTM approach with the observed correla-
tions of CWMs in the plots of the Guisane valley (Table 2)  
in order to assess how much of the observed correlation 
structure is not explained by the predictors and thus mirrors 
in the residual structure. The low RMSE (0.10) and a bias 
close to zero (–0.03) indicated that the correlation structure 
as estimated in the JTM approach was close to the observed 
among-trait correlations. Directional trends for all trait-
correlations were congruent between estimated and observed 

Table 2.  Pearson’s correlation coefficients among traits as observed 
in plots of the Guisane valley (based on CWMs) and as estimated by 
the JTM.

 Seed mass LDMC SLA RMSE1

Observed  
height 0.53 –0.13 0.28
seed mass  –0.21 0.32
LDMC   –0.31

Estimated (JTM) 0.10
height 0.45 –0.18 0.10
seed mass  –0.20 0.23
LDMC   –0.32

1compared to observed correlations.

Table 1. Model performance metrics for the ITMs, the MTM, and the 
JTM that accounts for the correlation structure among traits. RMSE 
and R2

CORR are calculated across all four traits in all approaches. 
Percentages in parentheses indicate how much performance drops 
(i.e. how much RMSE increases and how much R2

CORR decreases) in 
the split-sample validation. Metrics for the best performing approach 
in bold.

 Predicted versus observed Split-sample validation

 RMSE R2
CORR RMSE R2

CORR

ITM 0.73 0.47 1.20 (64%) 0.01 (99%)
MTM 0.80 0.35 0.98 (24%) 0.11 (69%)
JTM 0.83 0.31 0.98 (19%) 0.10 (68%)

http://dx.doi.org/10.5061/dryad.v475g
http://dx.doi.org/10.5061/dryad.v475g
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correlations and a regression between observed and estimated 
correlations revealed that the intercept and slope do not dif-
fer from zero and one, respectively (details in Supplementary 
material Appendix 1 Fig. A1). 

Response curves of the ITM and the MTM/JTM 
approaches differed in two aspects. First, ITM response 
curves were in general more complex than MTM and 
JTM response curves. For example, the response curves of 
SEEDM along all environmental variables took complex, 
data-driven shapes in the ITM approach, while except for 
relative humidity, both the MTM and the JTM approach 
yielded more linear responses along all gradients. Second, 

compared to the ITMs, prediction uncertainty was reduced 
when traits were modeled simultaneously using the JTM 
approaches. This manifested as reduced confidence intervals 
around the response curves. For example, confidence inter-
vals in the case of SLA along minimum temperature were 
larger for the ITM compared to MTM and JTM. Even 
though less pronounced, the same tendencies also held for 
the comparison between MTM and JTM, where accounting 
for correlations between traits in JTM often led to simpler 
responses with less uncertainty associated to the predictions. 
Figure 2 illustrates the general findings, while partial response 
curves for all traits along the four environmental gradients 

Figure 2.  Response curves of ITMs (red), the MTM (orange), and the JTM (blue) along the four environmental predictors for vegetation 
height. Solid lines represent predictions based on estimates, colored areas include the 95% confidence intervals. The grey background shad-
ing indicates environmental conditions that exceed the range spanned by the sample-locations used to fit the models (black dots).
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are presented in Supplementary material Appendix 1  
Fig. A2–A4.

Spatial projections

Spatial projections of the three modeling approaches showed 
that the JTM best approximates the range of observed CWMs. 
While ITMs tended to predict trait values outside the range 
of observed values that are sometimes unrealistic, the MTM 
and JTM approaches did not suffer from this problem to the 
same extent. The example of height (Fig. 3) demonstrates 
that the over- and under-prediction of ITMs and the MTM 
appeared mostly but not exclusively in areas of extrapolation, 
thus in areas with environmental characteristics that were not 
covered by the data used to train the models (black polygons 
in Fig. 3a–c). Spatial projections for all traits are presented in 
Supplementary material Appendix 1 Fig. A5.

Discussion

We show that it is possible to predict the functional composi-
tion of alpine grassland communities, and that models that 
model multiple traits simultaneously outperform indepen-
dent modeling of traits in several aspects. We further show 

that accounting for between-trait correlation in joint models 
further improves predictions, especially when extrapolating 
to novel environmental conditions. These findings suggest 
that traits should be modeled jointly rather than in isolation, 
and that between-trait correlation should be accounted for 
when modeling functional attributes of communities.

Trait–environment relationships – model comparison

We find that the joint trait model JTM outperforms the mul-
tiple trait model MTM and the independent trait models 
ITMs when predicting functional attributes of plant commu-
nities across the Guisane valley. ITMs clearly perform worst 
and while both approaches that model multiple traits simul-
taneously increased predictive performance, the difference 
between the MTM and the JTM that additionally accounts 
for between-trait correlations is rather marginal. The com-
parison of partial response curves (Fig. 2) helps to identify 
reasons for the superior performance of the MTM and JTM 
approaches over the ITM approach in predicting CWM trait 
values. ITMs generally yielded complex response curves along 
all environmental predictors (red curves in Fig. 2), which 
lead to a break down in ITM cross-validation performance 
(Table 1). Simultaneous modeling of traits in the MTM and 
JTM approaches restricts the complexity of response curves 

Figure 3.  Spatial projection of plant height across the Guisane valley. Projection of ITMs are shown in (a), the MTM projection in (b), and 
the JTM projection in (c) with colors indicating plant height on a log-scale according to the legend. Grey crosses represent locations of plots 
used for fitting the models. Black polygons depict areas where at least one of the environmental predictors reaches outside the observed 
(data-fitting) range. The boxplots in (d) describe the range of observed and predicted CWM values.
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and yields more constrained and linear responses (orange 
and blue curves in Fig. 2), which yield more realistic predic-
tions when extrapolating (Merow et al. 2014). Trait-models 
based on GLMs showed the same pattern as those based on 
GAMs: the JTM yielded better predictions in cross-valida-
tion than ITMs (Supplementary material Appendix 1 Table 
A2). Therefore, the complexity of the response is not the only 
explanation for improved predictions, because GLMs have 
simpler response curves and are less prone to over-fitting. 

Joint modeling may be superior to independent modeling 
because the modeled trait responses potentially profit from 
each other, an argument that is put forward in the field of 
SDMS: rare species are better predicted in JSDMs compared 
to species-specific SDMs (Ovaskainen and Soininen 2011). 
Adopted to the case of modeling traits, this could mean that 
the observed data may not sufficiently well sample the envi-
ronmental space to effectively approximate the biological 
reality of a specific trait-response in ITMs, but the response 
fitted by a joint model may get closer to biological reality in 
joint models because it is correlated with the responses of 
other traits. The fact that the JTM that explicitly accounts 
for correlations between traits performs better than the 
MTM supports this interpretation. More generally, model-
ing multiple traits simultaneously likely is superior to ITMs 
because it accounts for the fact that species’ presence and 
abundance in a given location is not determined by single 
traits, but rather results from the interplay of multiple trait 
axes (Muscarella and Uriarte 2016). Indeed, while account-
ing for trait–environment relationships the JTM estimates 
a correlation structure that is very similar to the observed 
between-trait correlations (Supplementary material Appen-
dix 1 Fig. A1). Taken together, this suggests that inherent 
trait tradeoffs are indeed affecting assembly and functional 
composition of communities and should by no means be 
ignored in ‘assemble-first, predict later’ approaches.

Improved validation-performance of the JTM approach 
parallels findings from species distribution modeling, where 
JSDM approaches exceed performance of independent 
SDMs across a number of multi-species data sets (Clark et al. 
2014, Harris 2015). In addition to the reduction in com-
plexity, the JTM approach also yields less uncertainty in 
parameter-estimates. While reduced confidence intervals 
(CIs) are visible across the entire range of the environmen-
tal variables, differences are greatest when extrapolating 
beyond the observed data-range (e.g. height along annual 
precipitation, Fig. 2). In summary, the limited complexity 
in response curves that are associated with less uncertainty 
suggests that the modeling approaches that model multiple 
traits simultaneously, and the JTM in particular, hold much 
promise for predicting functional attributes of communities 
and should be favored in any predictive modeling endeavor 
that involves projecting in space or time.

Spatial projections and extrapolation

Spatial projections of the ITMs, the MTM, and the JTM 
across the Guisane valley (Fig. 3) illustrate the differences 

between the three approaches. ITMs often predict extreme 
trait values that exceed observed values by orders of magni-
tude in both directions for both height and seed mass. For 
example, independent trait modeling predicts grasslands 
grow taller than 100 m (Fig. 2). Seed masses in the same area 
are predicted to be heavier than 100 g (Supplementary mate-
rial Appendix 1 Fig. A5); more than 1000 times the maximal 
seed mass observed for grassland species in the Guisane valley. 
Spatial projections derived from the MTM and JTM do not 
suffer from this problem. The predicted ranges of trait values 
more closely approximate the observed ranges and the mod-
els rarely predict unrealistic values (Fig. 3b–d, Supplementary 
material Appendix 1 Fig. A5). The JTM also predicts more 
realistic trait CWMs than the MTM approach. For example, 
MTM predicts grasslands at the bottom of the Guisane Val-
ley to grow as tall as 5 m, while JTM predicts a maximal 
height of 1 m. Nevertheless, neither of the two approaches 
that model multiple traits simultaneously avoids all potential 
issues regarding extrapolation and we urge the need to care-
fully assess the plausibility of predictions when extrapolating.

It is evident that the extreme predictions are largely 
restricted to areas where environmental conditions exceed 
conditions covered by data used to fit the models (black poly-
gons in Fig. 3a–c, Supplementary material Appendix 1 Fig. 
A5). Responses along most gradients are curvilinear in ITMs 
(Fig. 2, Supplementary material Appendix 1 Fig. A2–A4), 
and these flexible responses offer a possible explanation for 
the extreme predictions. Depending on the shape, extrapo-
lation beyond the observed data range can quickly lead to 
extreme values outside the observed range (see the partial 
response of LDMC along minimal temperature in Supple-
mentary material Appendix 1 Fig. A3 for an extreme exam-
ple). Extrapolation is well known to involve various potential 
pitfalls and should be avoided whenever possible. However, 
on-going global change likely causes the appearance of novel 
climates (Williams et al. 2007). Consequently, the joint mod-
eling of traits along environmental gradients that yields more 
conservative predictions when extrapolating is, therefore, the 
preferred approach.

Limitations and further development

Our results indicate that joint modeling should be preferred 
over independent modeling of traits along environmental 
gradients. Nevertheless, our approach is not free from limi-
tations. We argued that the reduction of data dimensional-
ity in a ‘assemble first, predict later’ approach leads to higher 
efficiency because of the reduced number of required model-
parameters. While this is certainly true for species-rich and 
trait-poor datasets, the number of model-parameters rap-
idly increases with the number of traits to be modeled. The 
increase in parameters will be especially drastic in the case 
of JTM, where the number of pair-wise trait combinations 
increases quadratically with the number of traits. We suggest 
considering the MTM approach instead of JTM for datasets 
with many traits, or using hierarchical latent variable models 
to reduce trait dimensionality (Hui 2015, Warton et al. 2015).  
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While we compare our findings with recent developments in 
the field of (joint) SDMs, our analysis did not aim to compare 
our ‘assemble first, predict later’ approach with the various 
flavors of ‘predict first, assemble later’ approaches. Potential 
future studies comparing both performance and compu-
tational efficiency of the various approaches for a range of 
conditions (i.e. varying numbers of species, traits, and sites) 
could help to determine the optimal approach.

Our MTM and JTM approaches as currently implemented 
use GAMMs and are therefore restricted to continuous traits. 
However, many functional traits, such as growth form of 
plants or diet of animals are categorical in nature. Categori-
cal (or mixed) traits could potentially be jointly modeled 
using mixed modeling software that allows for categorical 
(or mixed) responses, such as MCMCglmm in R (Hadfield 
2010) or using the various implementations of BUGS-like 
languages. While this is outside the scope of our study, we 
encourage further research to enable inclusion of categorical 
traits in joint models that follow the ‘assemble first, predict 
later’ approach. Another potential avenue of investigations 
not covered in our initial assessment of the approach is how 
phylogenetic signal in traits interacts with independent and 
joint estimation of trait responses, because we know that 
phylogenetic signal affects the estimation of how functional 
traits interact with the environment (Li and Ives 2017).

Implications

Traditional approaches to the so-called fourth corner prob-
lem (understanding how functional traits mediate species-
specific environmental responses) like RLQ analyses do 
not provide the possibility for spatial projections. While 
joint species distribution models overcome this limita-
tion (Pollock  et  al. 2012, Jamil  et  al. 2013, Brown  et  al. 
2014), they are generally computationally intensive for 
large datasets (hundreds or thousands of species). While 
latent variable models improve the capacity to model many 
species (Warton  et  al. 2015), these models still require 
spatial or environmental data for all species, which is not 
always available. Direct modeling of traits along environ-
mental gradients in a ‘assemble first, predict later’ man-
ner may be debatable (Clark 2016), but it represents the 
basis of JTM’s efficiency, which has great potential in 
large-scale applications like mapping ecosystem services 
in space. Lavorel et al. (2011), for example, relate a set of 
traits including height and LDMC to the environment to 
quantify ecosystem services. Such an approach is sensitive 
to spurious combinations of height-LDMC predictions and 
would obstruct correct predictions of ecosystem services. 
Simultaneous modeling of multiple traits, and especially 
the JTM approach, avoids predicting spurious trait com-
binations, thus is better suited to inform approaches that 
predict ecosystem services – an important tool in analyz-
ing and mitigating effects of global change on human well-
being (Díaz  et  al. 2015). Additionally, spatial projections 
of trait CWMs like vegetation height or leaf traits such as 
silica content could provide proximal predictors for SDMs 

of herbivores, ranging from large ungulates to insects.  
Furthermore, fitted trait–environment relationships could 
be used to drive trait responses to changing environments 
in earth system models (Pavlick et al. 2013, Verheijen et al. 
2013).
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