
How to measure and test phylogenetic signal
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Summary

1. Phylogenetic signal is the tendency of related species to resemble each other more than species

drawn at random from the same tree. This pattern is of considerable interest in a range of ecological

and evolutionary research areas, and various indices have been proposed for quantifying it. Unfor-

tunately, these indices often lead to contrasting results, and guidelines for choosing the most appro-

priate index are lacking.

2. Here, we compare the performance of four commonly used indices using simulated data. Data

were generated with numerical simulations of trait evolution along phylogenetic trees under a vari-

ety of evolutionary models. We investigated the sensitivity of the approaches to the size of phyloge-

nies, the resolution of tree structure and the availability of branch length information, examining

both the response of the selected indices and the power of the associated statistical tests.

3. We found that under a Brownian motion (BM) model of trait evolution, Abouheif’s Cmean and

Pagel’s k performed well and substantially better than Moran’s I and Blomberg’s K. Pagel’s k
provided a reliable effect size measure and performed better for discriminating between more

complex models of trait evolution, but was computationally more demanding than Abouheif’s

Cmean. Blomberg’sKwasmost suitable to capture the effects of changing evolutionary rates in simu-

lation experiments.

4. Interestingly, sample size influenced not only the uncertainty but also the expected values of most

indices, while polytomies andmissing branch length information had only negligible impacts.

5. We propose guidelines for choosing among indices, depending on (a) their sensitivity to true

underlying patterns of phylogenetic signal, (b) whether a test or a quantitative measure is required

and (c) their sensitivities to different topologies of phylogenies.

6. These guidelines aim to better assess phylogenetic signal and distinguish it from random trait dis-

tributions. They were developed under the assumption of BM, and additional simulations with

more complex trait evolution models show that they are to a certain degree generalizable. They are

particularly useful in comparative analyses, when requiring a proxy for niche similarity, and in con-

servation studies that explore phylogenetic loss associated with extinction risks of specific clades.

Key-words: assembly rules, comparative analysis, evolutionary community ecology, niche

similarity, phylogenetic niche conservatism, trait evolution

Introduction

The interplay between ecological and evolutionary processes is

increasingly recognized to shape the distribution of species in

space and time. In addition, larger and more detailed phyloge-

nies containing signatures of past evolutionary processes that

led to contemporary biodiversity are becoming more rapidly

available. As a result, many studies now use these phylogenies

to account for the relatedness of species and the resulting

dependencies of observations, for example, in the fields of com-

parative analyses, community ecology and macro-ecology (as

reviewed by Blomberg, Garland & Ives 2003; Lavergne et al.

2010). One central concept in these studies is the statistical

non-independence among species trait values because of their

phylogenetic relatedness (Felsenstein 1985; Revell, Harmon &
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Collar 2008). This non-independence can be measured by the

‘phylogenetic signal’, hereafter defined as the ‘tendency for

related species to resemble each other more than they resemble

species drawn at random from the tree’ (Blomberg & Garland

2002, p. 905). Phylogenetic signal has been used to investigate

questions in a wide range of research areas: How strongly are

certain traits correlated with each other (Felsenstein 1985)?

Which processes drive community assembly (Webb et al.

2002)? Are niches conserved along phylogenies (Losos 2008)

and is vulnerability to climate change clustered in the phylo-

geny (Thuiller et al. 2011)?

Along with the different types of applications, a variety of

indices has been proposed tomeasure and test for phylogenetic

signal in a quantitative trait (cf. Table 1 and Table A1 in the

Appendix for a selection of common indices and tests). Among

these are indices that were originally developed within the con-

text of spatial autocorrelation and have later been adapted

to phylogenetic applications (e.g. Moran’s I, Moran 1950;

Gittleman &Kot 1990; Pavoine et al. 2008; Revell, Harmon&

Collar 2008). These phylogenetic autocorrelation indices have

in common that their calculated values are not originally

designed to offer a quantitative interpretation (Li, Calder &

Cressie 2007 show this in a spatial context). Other indices

explicitly relate to a Brownianmotion (BM)model of trait evo-

lution (Martins 1996; Pagel 1999; Blomberg, Garland & Ives

2003) and are designed to allow for the comparison of

observed values among different phylogenies (Blomberg,

Garland & Ives 2003). In the BM model, trait evolution fol-

lows a random walk along the branches of the phylogenetic

tree, with the variance in the distribution of trait values being

directly proportional to branch length. To test the null hypoth-

esis of no phylogenetic signal, the observed value of the focal

index can be compared with values expected under random

trait distribution. Random trait distributions can either be

numerically simulated by random permutations of the trait

values among the tips of the phylogenetic tree or can be derived

analytically, for example, by assuming a chi-square distribu-

tion for likelihood ratio tests (cf. Table 1 and Materials and

methods section).

Even though all indices have been developed to quantify

and test for phylogenetic signal, they are calculated following

different approaches. Consequently, all of these indices mea-

sure different aspects of phylogenetic signal and have been

shown to respond differently to inaccurate phylogenetic infor-

mation, low sample sizes and the absence of branch length

information (Blomberg, Garland & Ives 2003; Cavender-

Bares, Keen&Miles 2006). However, in the literature, they are

used for the same ecological questions, and guidelines for

selecting the most appropriate method are missing. To make

the best use of these indices, it is essential to assess how esti-

mates of strength and tests of phylogenetic signal are influ-

enced by different properties of the data (Revell, Harmon &

Collar 2008).Ultimately, in each specific situation, an educated

decision on which index to use is necessary. Here, we compare

four indices which have been commonly used in evolutionary

ecology studies:Moran’s I (Gittleman&Kot 1990; applied e.g.

in Nabout et al. 2010), Abouheif’s Cmean (Abouheif 1999;

applied e.g. in Thuiller et al. 2011), Blomberg’s K (Blomberg,

Garland& Ives 2003; applied e.g. inKrasnov, Poulin&Mouil-

lot 2011) and Pagel’s k (Pagel 1999; applied e.g. in Thuiller

et al. 2011).Moran’s I (Gittleman&Kot 1990) andAbouheif’s

Cmean (Abouheif 1999) are autocorrelation indices and are not

based on an evolutionary model. The resulting values do not

offer any quantitative interpretation when comparing values

between different phylogenetic trees because the expected value

of the statistic under the assumed model is unknown a priori.

However, stronger deviations from zero indicate stronger rela-

tionships between trait values and the phylogeny. Blomberg’s

K (Blomberg, Garland & Ives 2003) and Pagel’s k (Pagel 1999)
assume a BM model of trait evolution. For both indices, a

value close to zero indicates phylogenetic independence and a

value of one indicates that species’ traits are distributed as

expected under BM. In most cases, the upper limit of Pagel’s k
is close to one (see Materials and methods for details), while

Blomberg’s K can take higher values indicating stronger trait

similarity between related species than expected under BM. All

four indices have been shown to perform well for the specific

aspects and range of phylogenetic signal they were developed

for. However, for the typical applications in evolutionary ecol-

ogy, some indices are more appropriate than others. The aim

of our comparison is to provide guidelines for an adequate

choice.

To develop these guidelines, we create synthetic data using

numerical simulations to control for different strength of

expected phylogenetic signal and compare both the response

of the selected indices and the power of the associated statisti-

cal tests. Furthermore, we investigate the sensitivity of the four

indices to the size of phylogenies (small vs. very large species

number), the resolution of tree structure (phylogenies with and

without polytomies) and the availability of branch length

Table 1. Phylogenetic signal indices and associated tests used in this

study

Approach

Directly

model

based?

Branch

length

considered?

Commonly

applied test

Abouheif ‘s

Cmean

Autocorrelation No No Permutation

Moran’s I Autocorrelation No Yes3 Permutation

Pagel’s k Evolutionary Yes Yes Maximum

likelihood

Blomberg’s K Evolutionary Yes Yes –

Blomberg’s

test1
Evolutionary Yes2 Yes Permutation

1The test statistic for Blomberg’s test is not Blomberg’s K but the

variance of standardized phylogenetic independent contrasts (see

Materials and methods for more details).
2When calculated based on phylogenetic independent contrasts, it

assumes Brownian motion; when it is based on generalized least

squares, it depends on how the variance–covariance matrix of

species dissimilarities is built from branch lengths (commonly this

is performed under the assumption of Brownian motion).
3Only true if the definition of the weighting matrix is based on

phylogenetic distances.
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estimates (phylogenies with branch length information vs. phy-

logenies with uniform branch lengths). Finally, we account for

more complex models of trait evolution such as Ornstein–Uh-

lenbeck processes and models that slow-down or speed-up the

rate of trait evolution over evolutionary time.

Materials and methods

We used simulated data to explore the behaviour of the four different

indices under study. We compared the estimated values of phyloge-

netic signal and the power of the associated tests for different topolo-

gies of the trees (number of tips, presence of polytomies and

availability of branch length information) and increasingly strong

BM. All calculations were performed within R (RDevelopment Core

Team 2011). In the following, we first introduce the four indices in

more detail and then describe the simulations.

PHYLOGENETIC SIGNAL INDICES

Moran’s I

Moran’s I was originally introduced as a measure of spatial autocor-

relation (Moran 1950). Gittleman &Kot (1990) adopted it for the use

in phylogenetic analyses. They refer to it as an autocorrelation coeffi-

cient describing the relation of cross-taxonomic trait variation to phy-

logeny. The estimator is given as:

Î ¼ n

S0

PN

i¼1

PN

j¼1
vijðyi � �yÞðyj � �yÞ

PN

i¼1
ðyi � �yÞ2

;

where yi is the trait value of species i and �y the average trait value. The

heart of this statistic is the weighting matrix V = [vij] where vij
describes the phylogenetic proximity between species i and j. The sum

of all pairwise weights is S0. Moran’s I is very flexible, because differ-

ent types of proximities can be used to describe the phylogenetic

information (e.g. Pavoine et al. 2008). In this study, proximities were

computed as the inverse of the patristic distances, with vii equal to

zero (package adephylo, Jombart, Balloux & Dray 2010). Moran’s I

was then estimated with the function abouheif.moran (package

adephylo).

Abouheif’s Cmean

Abouheif’s Cmean tests for serial independence is based on the sum of

the successive squared differences between trait values of neighbour-

ing species (Abouheif 1999). As there exist multiple ways to present

the order of branches in a phylogenetic tree, Abouheif suggested

Cmean as the mean value of a random subset of all possible representa-

tions. Pavoine et al. (2008) provided an exact analytical value of the

test. They demonstrated that it uses Moran’s I statistic with a new

matrix of phylogenetic proximities, which does not relate to branch

length but focuses on topology and has a non-zero diagonal (Pavoine

et al. 2008). We estimated Abouheif’s Cmean with the function abou-

heif.moran and the method oriAbouheif for the proximity matrix

(package adephylo).

Pagel’s k

Pagel’s k was introduced as a scaling parameter for the phylogeny

and measures phylogenetic dependence of observed trait data (Pagel

1999; Freckleton, Harvey & Pagel 2002). Under the assumption of a

pure Brownian model of evolution, the phylogenetic relationships of

species uniquely define the expected covariance matrix of their traits.

However, whenever additional factors, unrelated to the phylogenetic

history, have an impact on trait evolution, the influence of the phylog-

eny needs to be down-weighted. The coefficient k defines this weight

and is fitted to observed data such that it scales the Brownian phylo-

genetic covariances down to the actually observed ones. In other

words, k is the transformation of the phylogeny that ensures the best

fit of trait data to a BMmodel. Pagel’s k can adopt values larger than

one (traits of related species are more similar than expected under

BM) but in practice the upper limit is restricted because the off-diago-

nal elements in the variance–covariance matrix cannot be larger than

the diagonal elements (Freckleton, Harvey & Pagel 2002). We esti-

mated Pagel’s k with the function fitContinuous (package geiger),

which is based on likelihood optimization.

Blomberg’s K

Blomberg’s K expresses the strength of phylogenetic signal as the

ratio of themean squared error of the tip data (MSE0)measured from

the phylogenetic corrected mean and the mean squared error based

on the variance–covariance matrix derived from the given phylogeny

under the assumption of BM (MSE, Blomberg, Garland & Ives

2003). In a case in which the similarity of trait values is well predicted

by the phylogeny, MSE will be small and thus MSE0 ⁄MSE large. To

make the resulting value comparable to other trees with different sizes

and shapes, this ratio is standardized by the analytically derived

expectation for the ratio under BMevolution.K is computed as:

K ¼ observed
MSE0

MSE
=expected

MSE0

MSE
:

We estimated Blomberg’sKwith the function phylosignal (package

picante,Kembel et al. 2010).

SIMULATIONS

Phylogenetic trees

We simulated ultrametric phylogenetic trees with n species (tips), with

n ranging from 20 to 500. To account for phylogenies with and with-

out polytomies, we started by creating a basic tree with n ⁄ 2 tips and

afterwards added the missing n ⁄ 2 species to these basic trees. The

basic trees were pure-birth, stochastic phylogenies with a branching

rate of 0Æ05 (function birthdeath.tree in package geiger, Harmon et al.

2008). We added the missing n ⁄ 2 species by first randomly drawing a

tip from the basic tree for each new species (with replacement, so that

potentially several species could be added to one tip), second remov-

ing the final branches leading to the selected tips, and third replacing

these branches either with terminal polytomies or with pure-birth sto-

chastic phylogenies containing the former tips of the basic tree and

the new species. The root-to-tip branch length of the basic tree equal-

led the one of the final tree. This way, phylogenetic trees with polyto-

mies and pure-birth stochastic phylogenetic trees had the same

number of species, comparable root-to-tip branch length and (besides

the polytomies) comparable structures.

Trait evolution with variable strength of Brownian motion

We simulated continuous traits with different strengths of BM. The

weighting factor w determined the strength of BM and thus the

expected strength of phylogenetic signal (Fig. 1, traitgrams show
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the effect of increasing w on the dynamic evolution of trait values

along the phylogenies). We calculated traits as the weighted sum of

two components: trait = w traitBM + (1 ) w) traitrand, with w

ranging from 0 to 1. The first component, traitBM, is a vector of trait

values created with a BM process of trait evolution with a root value

of zero and a standard deviation of 0Æ1 (function rTraitCont in pack-

age ape, Paradis, Claude & Strimmer 2004). The second component,

traitrand, is the randomly shuffled vector traitBM. We calculated the

final trait values by z-standardizing the weighted sums. The idea

behind this procedure is to simulate a continuum of trait evolution

with pure BM vs. complete randomness as the two extremes. This

allowed us to investigate how phylogenetic signal indices and tests

respond to continuously increasing strength of BM in the trait

evolution.

Note that the use of a trait evolution model with the weighting fac-

tor w is very similar to generating trait values using a Pagel’s k model

(Appendix A2). This has two important consequences: First, this

study does not independently test the performance of Pagel’s k but

rather the values that we calculate for Pagel’s k index and test provide

a baseline to which the other methods can be compared. Second, the

difference in variance scaling between the two models leads to a

s-shaped relationship between w and estimates of phylogenetic signal

(see Appendix A2 and Fig. A5 for more detail).

More complex models of trait evolution

In addition to this sensitivity analysis, we ran some more complex

models of trait evolution. We accounted for Ornstein–Uhlenbeck

models and models that slow-down or speed-up the rate of character

evolution over evolutionary time. The Ornstein–Uhlenbeck model

describes a random walk with a central tendency. The slow-down or

speed-up models correspond to evolutionary rates that decrease or

increase as a function of evolutionary time since the root node of the

tree. These simulations and the theoretical expectations for results are

described inmore detail in AppendixA1.

Estimation of phylogenetic signal

Not all methods used in this study can handle polytomies. Blomberg’s

randomization test fails when it is based on independent contrasts.

Thus, we randomly resolved the polytomies by arbitrarily transform-

ing all multichotomies into a series of dichotomies with zero length

branches (function multi2di in package ape). To account for phylo-

genies with and without branch length information, we either kept

the branch length simulated in the tree evolution process or set all

branch lengths in the phylogenetic tree to unity. Afterwards, we

applied the four chosen indices of phylogenetic signal (Fig. 1).

We divided the values we report for Moran’s I (Gittleman & Kot

1990) and Abouheif’s Cmean (Abouheif 1999) by their maximum pos-

sible value to give the observed values a common upper limit among

the simulation scenarios. The maximum possible value depends on

the underlying proximity matrix, D (equals V for Moran’s I), and is

given as (n ⁄ 1tD1) kmax, where kmax is the first eigenvalue of the sym-

metric matrix X = (I ) 11t ⁄ n)D(I ) 11t ⁄ n), I is the identity matrix

and 1 is a vector of ones (De Jong, Sprenger & Vanveen 1984; Dray,

Legendre & Peres-Neto 2006).

Testing the null hypothesis of random trait variation

We tested the ability of Moran’s I, Abouheif’s Cmean and Blomberg’s

K to detect deviations from random trait variation using randomiza-

tion tests. In these tests, we randomly permuted the observed trait

values across the tips of the tree and computed the focal indices

based on the new, randomized trait pattern. Repeating this proce-

dure, a large number of times yielded a distribution of the focal indi-

ces under random trait variation. To compare the values of the

tested indices for the observed traits with these random distributions,

we extracted their quantiles. Significant deviation from random

expectations is indicated by quantiles larger than 0Æ95 for a signifi-

cance level of 0Æ05.
Blomberg, Garland & Ives (2003) suggested to use a different

approach to test for phylogenetic signal complementary to the pro-

posed K value for quantitatively characterizing phylogenetic signal.

One implementation of this test is via phylogenetically independent

contrasts as described in the seminal paper by Felsenstein (1985). The

idea is to use the variance of standardized phylogenetic independent

contrasts (PICs scaled by branch length) computed for the observed

traits on the focal phylogenetic tree. If closely related species tend to

have similar trait values (i.e. in the presence of phylogenetic signal),

the variance of the standardized contrast will tend to be low. It can

be assessed whether it is significantly lower than expected under ran-

dom trait variation by applying the randomization tests described

above. The test can be implemented via generalized least square tech-

niques or via phylogenetically independent contrasts (Blomberg,

−2 −1 0 1 2

Cmean=  0

I = −0·1

K = 0

λ = 0

−2 −1 0 1 2

Cmean=  0·2

I = 0

K = 0·1

λ = 0·4

−2 −1 0 1 2

Cmean=  0·8

I = 0·3

K = 1·9

λ = 1

1=w5·0=w0=w

Fig. 1. Traitgram for different weighting factors (w) for the Brownian motion component. Traitgrams arrange species along a continuous trait

axis (the x-axis) and connect them with their underlying phylogenetic tree (time on the y-axis). This way, the degree of line crossings in the

branches that connect species with their ancestors gives an intuitive picture of phylogenetic signal: The more the lines cross, the more randomly is

the trait distributed. As an example, the values of the different selected indices in relation tow are displayed at the bottomof each traitgram.
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Garland & Ives 2003). We used the function phylosignal (package

picante), which is based on independent contrasts for Blomberg’s

randomization test.

In theory, Pagel’s k could be tested via randomization as well.

However, for large phylogenies, the calculation of k is time-consum-

ing, making this approach impractical for our comparative analysis.

We thus followed another approach and compared the likelihood of a

model accounting for the observed lambda with the likelihood of a

model that assumes phylogenetic independence. To compute these

likelihoods in each case, we fit the lambda model using generalized

least square models accounting for phylogenetic dependencies by

incorporating a correlation structure (function gls and corPagel in

package ape). Using likelihood ratio test statistics, we compared

models weighting this correlation structure with the observed k with

models assuming a k equal to zero (i.e. no phylogenetic signal). We

then compared these likelihood ratio test statistics to chi-square dis-

tributions. An alternative way would have been to compute the likeli-

hoods with the functions fitContinuous or phylosig (package

phytools, Revell 2012).

Experimental design

For the comparative analysis of different methods for detecting

phylogenetic signal, we developed a full factorial design including

phylogenies with polytomies vs. without polytomies, phylogenies

with vs. without branch length information, sample sizes of 20, 50,

100, 250 and 500 species and increasing the strength of BM from

w = 0 to w = 1 by steps of 0Æ1. This gave rise to 220 different

scenarios. Each scenario was replicated 100 times. Within each sce-

nario, tests of the null model were based on 1000 randomizations

of the data. We report rejection rate of the null hypothesis (random

variation of the traits) and observed values of the different indices

for all scenarios.

Model-based sensitivity analyses

We used generalized additive models (GAMs) to further analyse the

main effects and the two-way interaction effects (interaction of two

variables) in the simulation experiments. Response variables were the

observed values of phylogenetic signal and for the tests of phylo-

genetic signal the P-values (i.e. quantiles of observed values in null

model distributions), respectively. Explanatory variables were phy-

logeny size, polytomies, branch length information and strength of

BM. The full models used splines for smoothing the effect of the

strength of BM and phylogeny size as main and interaction effects.

Transformations of the response variable and degrees of freedom for

the splines were chosen based on visual analysis of the residuals (for

details see footnotes of Tables A2 in the Appendix). The significant

influence of the explanatory variables on the response variables was

tested bymodel comparison of the full model and amodel missing the

focal variable. It is important to note that the P-values of these tests

should be treated with caution in simulation studies. Even if true

effect sizes are very small, given enough simulations, P-values will

eventually become significant. However, given equal numbers of

simulations, the differences between P-values can be used to compare

different scenarios. In addition to P-values, we reported effect sizes to

describe the effect of the explanatory variables on the change in the

response variables (Nakagawa&Cuthill 2007). Effect sizes were com-

puted as the coefficients of variation of the response (averaged over

repetitions) among the groups defined by the explanatory variables.

GAMs were obtained using the function gam in R (package gam,

Hastie 1992).

Results

MEASURING PHYLOGENETIC S IGNAL

None of the four tested indices of phylogenetic signal

responded linearly to the here-applied weighting factor for the

strength of BM in trait variance (Fig. 2, see also results of

GAMs in Table A2a). However, transforming the weighting

factor linearizes these relationships (AppendixA2, Fig. A5 and

not shown results). As expected, for Pagel’s k and Blomberg’s

K, themean value under pure BMwas one.

Variation among different simulation runs for one scenario

was rather small for the values of Pagel’s k, Abouheif’s Cmean

andMoran’s I when phylogenies were sufficiently large (larger

than 50 species, Fig. 2, see also Table A2b). The main differ-

ence among themwas that Pagel’s k showed the highest uncer-

tainty for intermediate strength of BM (especially for small

phylogenies), while Abouheif’s Cmean and Moran’s I were

most uncertain for strong BM. Blomberg’s K showed

many outliers with values below but also well above one for

strong BM.

The number of species in the phylogeny had a strong influ-

ence on the estimated phylogenetic signal (Fig. 2, see also

Table A2a). We found that Pagel’s k was the only index for

which the mean value did not respond to an increasing number

of species. While Abouheif’s Cmean tended to increase, the

response of Moran’s I was hump shaped and Blomberg’s K

tended to decrease (Fig. 2, Table A2a). Uncertainty in Pagel’s

k was the least affected by species number, while Abouheif’s

Cmean and Blomberg’s K slightly improved and Moran’s I

strongly improved for larger phylogenies (Table A2b). The

existence of polytomies did neither influence mean observed

values of the indices nor their uncertainty (Fig. 3, see also

Table A2a,b). Similarly, the effect of branch length informa-

tion was small (Fig. 3). Abouheif’s Cmean remained unaffected

as it ignores branch length information. Pagel’s k andMoran’s

I increased slightly, while Blomberg’s K increased more

strongly and got more uncertain when branch length informa-

tion wasmissing (Fig. 3, see also Table A2a,b).

TESTING FOR PHYLOGENETIC SIGNAL

Pagel’s k had the smallest type I error for all sizes of phyloge-

nies when testing observed phylogenetic signal against random

expectations. Indeed, only in 1% of the simulations was a ran-

dom trait misidentified as showing significant phylogenetic sig-

nal (Fig. 4, see printed values in the plots). With increasing

departure from random trait evolution, Pagel’s k, Abouheif’s

Cmean and Moran’s I quickly gained power, that is, correctly

identified phylogenetic signal. Even for moderate BM

(w > 0Æ5), phylogenetic signal was identified in almost all sim-

ulations, indicating low type II errors (Fig. 4, see also results of

GAMs in Table A2c). In contrast, Blomberg’s test showed a

much higher type II error for intermediate strength of BM.

Only when traits exhibited strong phylogenetic signal

(w > 0Æ8) did all simulations significantly reject the null

hypothesis of absence of phylogenetic signal. For very small

How to measure and test phylogenetic signal 747

� 2012 The Authors. Methods in Ecology and Evolution � 2012 British Ecological Society, Methods in Ecology and Evolution, 3, 743–756



phylogenies (20 species), all approaches had high type II

errors.

We further compared the variation among the different sim-

ulation runs for one scenario by plotting the P-values of the

observed values given the null distributions (Fig. A1). As

expected, the uncertainty in P-value estimates was highest for

more random trait distributions in the phylogeny (low w, see

also Table A2d). Tests associated with Pagel’s k, Abouheif’s

Cmean and Moran’s I showed reduced uncertainty already for

w = 0Æ3, whereas Blomberg’s test only became more certain

for w > 0Æ6. For moderate BM in the range of w = 0Æ3–0Æ5,
power for Pagel’s k, Abouheif’s Cmean and Moran’s I strongly

depended on the sizes of phylogenies and showed increasing

power for increasing species number. Blomberg’s test perfor-

mance did respond much less to increasing the size of the phy-

logeny (Fig. 4, Table A2c).

None of the tests was affected strongly by the presence of

polytomies (Fig. A2). Similarly, the effect of incorporating

branch length information was negligible (Fig. A2 and Table

A2c). Blomberg’s test responded slightly positively to missing
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branch length, that is, phylogenetic signal was detected for

lowerw andwith higher accuracy (Fig. A2).

Pairwise correlations between the P-values of the different

methods ranged frommoderate to high but exhibited relatively

strong variability (Fig. A3). Abouheif’s Cmean P-values corre-

latedmost strongly with those ofMoran’s I, followed by corre-

lations of Pagel’s k with Abouheif’s Cmean and Pagel’s k with

Moran’s I. Again, correlations with P-values of Blomberg’s

test were the weakest. Here, we plotted both the PIC variance

test suggested by Blomberg and the randomization procedure

based on Blomberg’s K. Our results show that both

approaches give almost equal results even when comparing

phylogenies with very different numbers of species (Fig. A3).

PHYLOGENETIC INDEX AND TEST PERFORMANCE IN

AN OVERVIEW

We used GAMs to further explore the main effects and the

two-way interaction effects (interaction of two variables) of

increasing strength of BM, the number of species, polytomies
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and branch length. Comparisons of the influence of these vari-

ables on phylogenetic indices and tests are presented in the

Appendix (see Materials and methods and Table A2). Table 2

gives a qualitative summary of the most important findings for

measuring and testing phylogenetic signal and provides a

quickly accessible validation of the different methods. Overall,

Pagel’s k and Abouheif’sCmean fulfilled most of the criteria for

good index and test performance (indicated in Table 2 by ‘yes’

and ‘0’ for good and moderate performance). Both methods

differ in certain aspects of index performance (especially the

response to increasing strength of BM and dependence on the

size of the phylogeny) but much less in test performance.

Moran’s I performs less well than Pagel’s k and Abouheif’s

Cmean as an index and a test. Blomberg’sK performed less well

for these data simulated under the assumption of BM,

especially when BMwas weak.

MORE COMPLEX MODELS OF TRAIT EVOLUTION

All indices and associated tests showed either the theoretically

expected functional relationships with the parameters of the

more complex trait evolution models or no response (see

Fig. 5, Appendix A1 for more details on theoretical expecta-

tions and Fig. A4). Under the Ornstein–Uhlenbeck model,

changes in patterns of phylogenetic signal were strongest

(Fig. 5). This was the only model under which the null model

expectation could not always be rejected (Appendix, Fig. A4).

Pagel’s k showed higher uncertainty than the other methods

especially for intermediate values of phylogenetic signal.

Under the j-model, trends were strongest for Blomberg’s K

and Pagel’s k. However, the range of change wasmuch smaller

for Pagel’s k than for Blomberg’s K. Under the d-model, only

Blomberg’s K showed a clear trend. In sum, comparing the

indices of phylogenetic signal with each other, we observed the

strongest effect sizes for Blomberg’sK, followed by Abouheif’s

Cmean and Pagel’s k. Moran’s I showed only small changes and

great overlap of estimates between different scenarios (Fig. 5).

The test of Pagel’s k responded most sensitive (Appendix, Fig.

A4).

Discussion

The phenotypic trait values of extant species are shaped by

their evolutionary history (Harvey& Pagel 1991). Thus, even if

this dependence may be blurred by the progression of time,

phylogenetic dependence of trait distribution should be consid-

ered ubiquitous in the living world (Blomberg, Garland & Ives

2003). This awareness has – beginning 25 years ago – revolu-

tionized the scientific area of comparative analysis. In his

seminal paper, Felsenstein (1985) pointed out that because of

their phylogenetic relationships, species cannot be regarded as

independent data points in statistical approaches of compara-

tive biology.Hereby, he gave impulse to amultitude of concep-

tual and applied studies about how to infer the statistical

non-independence among species trait values because of their

phylogenetic relatedness by quantifying the pattern of phylo-

genetic signal in these traits.

Since then, it has become clear that the level of phylogenetic

dependence can vary strongly among investigated phylogenies

and even clades, often being significantly reduced when con-

trasted against the expectations from the standard model of

BM (Revell, Harmon & Collar 2008). The divergence from

BM expectations can result from a number of different reasons

relating to the underlying evolutionary processes, such as

fluctuations in the rate of evolution over time (Pagel 1999),

directional or stabilizing selection (Revell, Harmon & Collar

2008; Ackerly 2009) or measurement error (Freckleton,

Harvey & Pagel 2002; Ives, Midford & Garland 2007;

Felsenstein 2008). However, variability in estimated phyloge-

netic signal could also stem from the statistical tools, that is,
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the indices used for measuring phylogenetic signal and the

power of the associated tests. This is because the different

approaches capture different aspects of phylogenetic signal

and their values thus can differ greatly, impeding comparison

and straightforward interpretation. Here, we compared four of

the most widely used approaches to provide guidelines on the

choice of an index and an associated test, and on a critical

interpretation of the results.

PERFORMANCE OF INDICES AND TESTS UNDER

DIFFERENT CONDIT IONS

Our results show that Abouheif’s Cmean and Pagel’s k per-

formedwell, both as measures of phylogenetic signal and when

tested against expectations of random trait distribution. How-

ever, as our trait evolution model is very similar to a k-model

of trait evolution (see Appendix A2) Pagel’s k is predestined to

perform well. Thus, our sensitivity analysis does not provide

an independent test for Pagel’s k but rather a baseline for com-

parison with other metrics. While the significance levels of

Abouheif’s Cmean, Moran’s I and Pagel’s k were highly corre-

lated, our simulation scenarios showed that Pagel’s k and

Blomberg’s K can lead to divergent conclusion even for time-

independent simulations and a phylogenetic signal not larger

than one. This seems surprising as earlier findings from similar

simulation models found concordant results for the two meth-

ods (Revell, Harmon&Collar 2008).

As predicted, the results onMoran’s I andAbouheif’sCmean

attested that it is not reliable to quantitatively compare their

estimates of phylogenetic signal among different phylogenies.

In our simulations, the mean value of Moran’s I showed a

hump-shaped relation with increasing sample size even when

the underlying strength of BM was identical. In contrast, the

mean value of Abouheif’sCmean increasedwith increasing sam-

ple size. The latter is because the considered distances depend

only on topology and are calculated in a way that dispropor-

tionally increases long distances (species pairs that split early in

the phylogenetic tree) in comparison to short distances (species

pairs that split late in the phylogenetic tree) when the number

of species is increasing. Because Abouheif’s Cmean is merely a

Morans’ I test with a particular phylogenetic distance metric,

the choice of the phylogenetic metric used to compute these

indices (matrix V) is likely to impact the results. These results

also demonstrate that both indices depend on the structure

and size of the phylogeny and that their values cannot be quan-

titatively compared.

As expected, all four testedmethods showed less uncertainty

with increasing size of phylogenies. This effect wasmuch stron-

ger for the estimates of indices than for the tests against phylo-

genetic independence. This result is consistent with earlier

studies showing that, for example, Moran’s I performs poorly

when applied to small sample sizes (Diniz-Filho, De Sant-Ana

& Bini 1998). However, type I errors depend not only on the

sample size but also on the strength of phylogenetic depen-

dence. While Moran’s I is very variable at low sample sizes for

highly phylogenetically structured traits, Pagel’s k is most

unreliable at small sample sizes and moderate phylogenetic

dependence (note, however, that Pagel’s k cannot greatly

exceed one by definition, see Materials and methods for

details).

All methods (except Abouheif’s Cmean, which does not

include branch length information) showed slightly higher

phylogenetic signal when branch length information was miss-

ing but no consistent trends with respect to the accuracy of the

Table 2. Main characteristics of the response of phylogenetic signal indices (a) and tests (b) to increasing strength of Brownian motion (BM),

increasing species number, polytomies and branch length information. This table summarizes findings from visual analyses and statistical models

(GAMs are described in more detail in the Appendix); ‘yes’ indicates that the characteristic is fulfilled, ‘no’ a lack of the specified characteristic

(P < 0Æ001 and effect size>0Æ2, cf. Appendix) and ‘0’ an intermediate response (P < 0Æ05 and effect sizes>0Æ1, cf. Appendix)

Abouheif ‘s Cmean Moran’s I Pagel’s k Blomberg’s K

(a) Measuring phylogenetic signal

Discrimination of increasing BM (visual validation) Yes 0 ⁄ yes Yes 0

Constant uncertainty under increasing BM No1 No1 No2 No1

Constant under increasing N 01 No2 Yes 03

Constant uncertainty under increasing N 03 No3 Yes 03

Constant under polytomies Yes Yes Yes Yes

Constant uncertainty under polytomies Yes Yes Yes Yes

Constant under missing branch length NA Yes Yes No1

Constant uncertainty under missing branch length NA 01 Yes No1

(b) Testing for phylogenetic signal

Discrimination of increasing BM (visual validation) Yes4 Yes4 Yes4 Yes5

Constant uncertainty under increasing BM No3 No3 No2 No3

Constant under increasing N 03 No3 03 03

Constant uncertainty under increasing N 03 No3 03 03

Constant under polytomies Yes Yes Yes Yes

Constant uncertainty under polytomies Yes Yes Yes Yes

Constant under missing branch length NA Yes Yes 01

Constant uncertainty under missing branch length NA Yes Yes 01

1Upwards trend; 2Hump-shaped; 3Downwards trend; 4Early; 5Late.
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results were identified. Surprisingly, Blomberg’s test addition-

ally revealed a slightly increased type II error when branch

length information was available. Given other sources of

uncertainty, the effects of the availability of branch length

information were negligible however. This finding is congruent

with earlier studies concluding that autocorrelation methods

are reasonably robust to missing branch length information

(Martins 1996). It has to be noted that our simulations are not

only based on traits that evolved (partly) under BM but also

on tree structures that evolved under a uniform, time-homoge-

neous birth process. Consequently, branch lengths are expo-

nentially distributed and less biased than typically observed in

nature. The question of how important branch length informa-

tion is for different types of trees (e.g. with strongly skewed

branch length distributions) remains open. For example, we

would expect branch length to be more informative if different

molecular clocks or different selective regimes exist in different

parts of the tree. Polytomies had very small effects on Blom-

berg’s methods and on Moran’s I. Abouheif’s Cmean and Pa-

gel’s k were not affected at all. While this finding is supported

by earlier studies (Martins 1996), polytomies that occur deeper

in the phylogenetic structure, soft polytomies or polytomies

including more species may affect results more strongly

(Davies et al. in press).

Some complementary simulations with more complex mod-

els of trait evolution confirmed most of our results and conclu-

sions (Fig. 5, Appendix A1, Fig. A4). None of the different

methods showed unexpected trends. However, some methods

did respond very weakly and with high uncertainty to changes

in niche conservatism (parameter a in the Ornstein–Uhlenbeck

model), slowed-down trait evolution over evolutionary time

(parameter d) and speciation events (parameter j). Overall,
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Abouheif’sCmean andMoran’s I respondedmost conservative,

while Pagel’s k and especially Blomberg’s K were more sensi-

tive. These differences in sensitivity can lead to different con-

clusions regarding the question whether a parameter change

leads to a change in the pattern of phylogenetic signal. It is dif-

ficult to judge which index is most correct, or in other words

which is the ‘right’ sensitivity, because theoretical expectations

refer to the direction of change but not to the strength of these

changes (see Appendix A1 for theoretical expectations). How-

ever, Blomberg’s K outperformed the other indices in identify-

ing small differences in niche evolution processes that were not

related to the strength of BM.

In practice, our results indicate that Blomberg’sK is difficult

to interpret when applied to traits that developed under BM.

This is because for empirical data, test results depend on only

one phylogeny and Blomberg’s K shows very high variability.

Thus, large sample sizes would be required for testing for phy-

logenetic signal using Blomberg’s K when the underlying trait

evolution process follows BM. However, our additional simu-

lations also reveal an advantage of this sensitivity to slight

changes in the phylogenetic distribution of traits: On average,

Blomberg’s K is very well suited to capture theoretically pre-

dicted changes in phylogenetic signal. Overall, this highlights

how important the implicit assumption of a trait evolution

model is for calculating phylogenetic signal.

GUIDELINES FOR MEASURING, TESTING AND

INTERPRETING PHYLOGENETIC S IGNAL

The results of our sensitivity analysis suggest that Abouheif’s

Cmean is a well performing method for measuring and testing

phylogenetic signal under the set of investigated situations.

Similarly, Pagel’s k performed well for the more complex

models of trait evolution (the good performance of Pagel’s k
in the sensitivity analysis needs to be interpreted with caution

as it was predestined by the chosen model of trait evolution).

Under the assumption that traits evolved following a BM

process, the choice of one over another merely depends on

the question under investigation and on the nature of the

expected phylogenetic signal. In the past, implementations of

Pagel’s k were very slow, and nonparametric randomization

tests were therefore unfeasible for high numbers of species.

However, this problem has become less severe as now an

optimized implementation in R language is available (cf.

Appendix Table A1).

Many studies not only aim at attesting the presence of phy-

logenetic signal (i.e. a significant test result) but also at estimat-

ing the strength of phylogenic signal (i.e. the effect size,

Nakagawa & Cuthill 2007). However, as discussed above, the

use of Abouheif’s Cmean is restricted to comparisons among

different traits in the same phylogeny and therefore not suited

as an effect size measure. In contrast, Pagel’s k and Blomberg’s

Kmay also be used to compare values across different phyloge-

nies even though phylogenetic signal indices always depend on

phylogenies and specific data characteristics and comparisons

may thus be hindered by noise. Of these two, only Blomberg’s

K can capture a phylogenetic signal much stronger than

expected under BM because the range of Pagel’s k is restricted.

One field where the effect size of phylogenetic signal becomes

important is in studies of community assembly. Here, a suffi-

ciently high level of phylogenetic signal is a prerequisite to

allow drawing macro-ecological conclusions on assembly rules

on the basis of phylogenetic diversity by assuming that phylo-

genetic distance can be used as a proxy for niche similarity

(Webb et al. 2002; Gilbert & Webb 2007). However, as our

simulations show, even small deviations from random patterns

can result in significant results. These deviationsmost probably

are too small to allow using phylogenetic distance as a proxy

for species’ niche similarity. A similar argument holds for com-

parative analyses. In these analyses, too strong patterns of phy-

logenetic signal need to be removed from the data to assure

that data points are statistically independent from each other.

Phylogenetic independent contrasts are commonly used to

achieve such correction (Felsenstein 1985). But to assess the

strength of phylogenetic signal and resulting dependence of

data points, one needs an estimate of effect size. Finally, when

using simulations to compare the effect of different models of

trait evolution on phylogenetic signal, effect sizemeasures seem

to be more reliable than the number of significant test results.

This is because increasing the sample size increases the number

of significant test results. Increasing sample size, that is, the

number of repetitions, is fairly easy in simulation models and

withoutmuch costs. Thus, the number of significant test results

is not verymeaningful.

Beyond these considerations, it has been argued that

approaches with an explicit assumption of an evolutionary

model offer the advantage of having a straightforward evolu-

tionary interpretation, while autocorrelation approaches show

better robustness to inaccurate phylogenetic information and

impose less restrictive assumptions (Gittleman & Kot 1990;

Martins 1996). However, phylogenetic signal can be the result

of a multitude of evolutionary or non-evolutionary processes

(Revell, Harmon & Collar 2008; Ackerly 2009). It is therefore

challenging to use estimates of phylogenetic signal for making

inferences about the underlying processes, which shaped

observed patterns (see discussion on phylogenetic niche conser-

vatism, Appendix A1, Revell, Harmon & Collar 2008). This

puts the advantage of offering evolutionary interpretation of

some phylogenetic signal indices into perspectives. We argue

that inferring evolutionary processes from phylogenetic signal

is only possible when the measure of the latter is performed

under the clear assumption of a specific trait evolution model

(Cooper, Jetz &Freckleton 2010).

Because Abouheif’s Cmean and Pagel’s k show good behav-

iour in statistical respects and will in general have comparable

biological interpretability, the choice of the method should be

mainly driven by the necessity of estimating effect size. Addi-

tionally, one should consider expectations with regard to the

strength of phylogenetic signal, practical run time consider-

ations and possibly slight differences in performance with

respect to specific features of the phylogeny such as the size of

the tree and uncertainties about its topology and about branch

lengths. When the underlying process of trait evolution does

not follow BM, Blomberg’s K may be equally well suited.
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To account for this uncertainty because of the dependence of

results on the underlying model of niche evolution and to bet-

ter understand the data, we suggest that analyses of phyloge-

netic signal should be complemented by graphical exploration

of the data and further investigation (Ollier, Couteron &Ches-

sel 2006). A particularly interesting question lies in the identifi-

cation of regions of the tree exhibiting the strongest

phylogenetic signal. Indeed, the assumption that patterns of

correlation between trait values and phylogenetic relatedness

are constant in a phylogeny is often biologically unrealistic

(Harvey & Pagel 1991; O’Meara et al. 2006). This is especially

true in large phylogenies, which are paradoxically the most

powerful to detect a significant phylogenetic signal. A promis-

ing approach to address this question consists in decomposing

observed phylogenetic patterns across multiple phylogenetic

scales, using methods such as phylogenetic autocorrelograms

(Gittleman & Kot 1990), orthograms (Ollier, Couteron &

Chessel 2006) or phylogenetic eigenvectors (Covain et al.

2008), branch lengths transformations (Pagel 1999) or decom-

positions of trait diversity across nodes (Pavoine, Baguette &

Bonsall 2010; see Table A1b). However, the adequateness of

phylogenetic eigenvector regression for accounting for phylo-

genetic non-independence among taxa has recently been ques-

tioned (Freckleton, Cooper & Jetz 2011; Adams & Church

2011).

FROM SIMULATED DATA TO REALITY

Experimental studies with simulated data are useful for investi-

gating the sensitivity of phylogenetic methods to violations of

their assumptions (Rohlf 2001). However, they can only repre-

sent a limited selection of all possible implementations. In our

study, all comparisons for the sensitivity analysis are based on

data simulated with a stronger or weaker influence of a BM

process. In the Appendix, we analysed some additional models

with more complex evolutionary processes resulting fromOrn-

stein–Uhlenbeck processes (Felsenstein 1988; Butler & King

2004), speed-up and slowed-down evolutionary rate models

and speciation models (Pagel 1999). However, we did not

explore the full parameter ranges and the full range of models

suggested in the literature to simulate trait evolution.We argue

that our experimental setting is justified because validating

indices and tests demands clear quantitative expectations for

the phylogenetic signal. However, simulations under more

complex evolutionary models can show very complex patterns

even without comparing different indices (Revell, Harmon &

Collar 2008), and in these cases, no clear quantitative expecta-

tions for the strength of phylogenetic signal would exist.More-

over, the 22 000 simulations underlying our sensitivity analysis

already represent the current limits of computing power

offered by a high-performance computer grid. Finally, even

our relatively simple simulations enabled us to observe consid-

erable discrepancies between standard indices of phylogenetic

signal and allowed us to provide valuable guidelines for their

application.

Our extensive sensitivity analysis relied on the assumption

of a Brownian model of evolution. Interestingly, additional

simulations involving more complex models of evolution con-

firmed most of the obtained results. While this suggests that

our conclusions are fairly general, some care should still be

taken when analysing phylogenetic comparative data. The

question whether results from simulation studies generalize to

specific field applications where the underlying trait evolution

model is unknown cannot be resolved finally.

One aspect worth considering in future studies based on sim-

ulated data is the shape of the phylogenetic trees. In our experi-

ments, we simulated tree shapes under a Yule process, which

lead to trees being more balanced than trees typically observed

in nature. It would be interesting to explore whether results

change when contrasted against more arbitrary trees (e.g. fully

balanced or comb-shaped trees) and real trees. Less balanced

phylogenetic trees may be especially problematic for

approaches that ignore branch length (e.g. Abouheif’s Cmean),

because trait values expected under BM differ more strongly

when branch lengths are more extreme. Furthermore, we

would expect stronger outlier effects in imbalanced trees for all

branch length-based approaches. This is because of the strong

leverage effect trait values with greater average distance to the

other species in the tree have.

Another important aspect is process and measurement

uncertainty. All indices and tests of phylogenetic signal require

good estimates of the phylogeny and trait values for the organ-

isms under scrutiny (Rohlf 2001). Errors in the tree topology

and in the estimation of species mean trait values are likely to

bias the calculated phylogenetic signal (Freckleton, Harvey &

Pagel 2002; Blomberg, Garland & Ives 2003; Ives, Midford &

Garland 2007; Felsenstein 2008). Phylogenetic reconstructions

are usually based on limited genetic information and are there-

fore uncertain. In the past, themost likely phylogeny was often

chosen from a range of possible trees. Nowadays, Bayesian

approaches become increasingly used and allow for consider-

ing samples of most likely phylogenies to account and evaluate

this uncertainty (e.g. Lopez-Vaamonde et al. 2006). Similarly,

trait measurements are subject to inevitable measurement

errors and possible biases of the sampling designs. An addi-

tional and important source of uncertainty, when using mean

trait values for species, comes from intraspecific trait variabil-

ity (Ives, Midford & Garland 2007; Felsenstein 2008; Albert

et al. 2010).

Conclusions

Pagel’s k, an approach based on a BM process of trait evolu-

tion, and Abouheif’s Cmean, an autocorrelation measure, were

shown overall to perform best given that the underlying evolu-

tionary model is random or follows BM. Pagel’s k performs

better for discriminating random and BM patterns of trait dis-

tribution in the phylogeny but is computationally more

demanding than Abouheif’s Cmean. The strongest argument

for Pagel’s k is that it provides a reliable effect size measure

besides testing for phylogenetic signal. Blomberg’s K did per-

form least well in our sensitivity analysis (trait evolution under

more or less BM) especially when considering not the mean

trend but sensitivity to noise as ameasure of performance. This
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indicates that it measures an aspect of phylogenetic signal that

differs from the other studied methods. However, Blomberg’s

K has shown to be a good choice for simulation studies with

simulated datawhere trends are in the focus of interest. Scenar-

ios can be repeated and thus sensitivity of Blomberg’s K to

small changes in phylogenetic trait distribution is more a virtue

than a problem because it allows to detect subtle changes in

phylogenetic signal where other methods would tend to fail.

We challenge the view that Pagel’s kmay have amore straight-

forward evolutionary interpretation than Abouheif’s Cmean,

because in practice our ability to infer processes from patterns

of phylogenetic signal is very limited and critically depends on

the assumed underlying evolutionary model. Therefore, mea-

suring phylogenetic signal is most valuable for studies aiming

to identify a pattern, that is, for comparative analyses and for

studies requiring a proxy for species’ niche similarity.
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