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ABSTRACT

Aim Metacommunity theories attribute different relative degrees of importance

to dispersal, environmental filtering, biotic interactions and stochastic processes

in community assembly, but the role of spatial scale remains uncertain. Here we

used two complementary statistical tools to test: (1) whether or not the patterns

of community structure and environmental influences are consistent across res-

olutions; and (2) whether and how the joint use of two fundamentally different

statistical approaches provides a complementary interpretation of results.

Location Grassland plants in the French Alps.

Methods We used two approaches across five spatial resolutions (ranging

from 1 km 9 1 km to 30 km 9 30 km): variance partitioning, and analysis of

metacommunity structure on the site-by-species incidence matrices. Both

methods allow the testing of expected patterns resulting from environmental

filtering, but variance partitioning allows the role of dispersal and environmen-

tal gradients to be studied, while analysis of the site-by-species metacommunity

structure informs an understanding of how environmental filtering occurs and

whether or not patterns differ from chance expectation. We also used spatial

regressions on species richness to identify relevant environmental factors at

each scale and to link results from the two approaches.

Results Major environmental drivers of richness included growing degree-

days, temperature, moisture and spatial or temporal heterogeneity. Variance

partitioning pointed to an increase in the role of dispersal at coarser resolu-

tions, while metacommunity structure analysis pointed to environmental filter-

ing having an important role at all resolutions through a Clementsian assembly

process (i.e. groups of species having similar range boundaries and co-occur-

ring in similar environments).

Main conclusions The combination of methods used here allows a better

understanding of the forces structuring ecological communities than either one

of them used separately. A key aspect in this complementarity is that variance

partitioning can detect effects of dispersal whereas metacommunity structure

analysis cannot. Moreover, the latter can distinguish between different forms of

environmental filtering (e.g. individualistic versus group species responses to

environmental gradients).

Keywords

Alps, community assembly, France, incidence matrix, metacommunity struc-

ture, plant communities, site-by-species, variance partitioning.
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INTRODUCTION

The concept of metacommunity, defined as a set of commu-

nities connected through dispersal, has recently gained much

popularity in ecology (Logue et al., 2011). This success stems

in part from the need to integrate ecological knowledge at

different spatial scales and to consider the interplay between

the regional pool of species and local biological forces

driving community assembly (Leibold et al., 2004; Holyoak

et al., 2005; Harrison & Cornell, 2008), a necessary step in

ultimately developing a mechanistic understanding of biodi-

versity distribution (Lavergne et al., 2010). Four main meta-

community theories are distinguished on the basis of the

importance each one gives to the four main processes identi-

fied as shaping the structure of metacommunities: dispersal,

stochastic events of colonization and extinction, environ-

mental filtering, and biological interactions (Leibold et al.,

2004; Holyoak et al., 2005; Logue et al., 2011). Although

theoretical and experimental work is still progressing with

regard to how these processes interact to produce testable

predictions, empirical work has already made some valuable

contributions to the subject (Logue et al., 2011). The four

metacommunity frameworks combine these processes in dif-

ferent ways: (1) the neutral model focuses on the effects of

stochastic dispersal events and competition among ecologi-

cally equivalent species; (2) the patch dynamics framework is

dominated by colonization–extinction trade-offs in patchy

environments (e.g. a lower dispersal ability requires a higher

competitive ability for long-term survival); (3) species sort-

ing focuses on environmental filtering (i.e. species occupy

sites according to their environmental preferences); and (4)

mass effects are the interaction between environmental filter-

ing and dispersal (Leibold et al., 2004; Holyoak et al., 2005).

Although directly testing the relative effects of these pro-

cesses in real communities is often very difficult, owing to

the large scales and number of species involved, many efforts

to link contrasting predictions to the observed diversity pat-

terns have shown some success (Logue et al., 2011). These

analyses have generally found that environmental filtering or

a combination of it with dispersal dominates temperate

communities at large spatial scales (e.g. Gilbert & Lechowicz,

2004; Cottenie, 2005; Meynard & Quinn, 2008), whereas

studies based on tropical systems tend to find more support

for neutral processes (e.g. Tuomisto et al., 2003; Cottenie,

2005; Keppel et al., 2010). Note, however, that results have

been fairly mixed in some cases. One of the main impedi-

ments to the development of a mechanistic view of commu-

nity assembly comes from the challenge to distinguish

empirically the effects of dispersal from those related to

environmental filtering because the two processes may gener-

ate similar patterns of spatial autocorrelation in species

diversity and composition (Cottenie, 2005; M€unkem€uller

et al., 2012). Recent studies have therefore suggested the

need to use multiple approaches and multiple scales in

metacommunity analysis (Giladi et al., 2011; Logue et al.,

2011; M€unkem€uller et al., 2012).

Three empirical tests, which have usually been applied

separately, have been proposed within a metacommunity

framework to relate ecological patterns and theory (Logue

et al., 2011). The first strategy is targeted at revealing the

importance of neutral processes (Hubbell, 2001); that is, the

effects of stochastic processes under the assumption that spe-

cies competing for similar resources are equivalent. We will

not deal with the neutral approach here but will focus

instead on the other two strategies, which consider the rela-

tive roles of the four processes (environmental filtering, bio-

logical interactions, dispersal limitation and stochastic

events) in community assembly. The second approach, vari-

ance partitioning, is used to tease apart the roles of spatial

structure and environmental filtering in community data

(Cottenie, 2005). Spatial structure and environmental influ-

ences are decomposed using partial redundancy analysis

(Fig. 1a), which is equivalent to partial regression analysis

but using a multivariate response (a community matrix)

(Borcard et al., 1992). The part of variance explained that

can be linked solely to environmental variables is usually

attributed to environmental filtering; the part that is linked

to spatial structure and is non-environmentally driven is

usually attributed to dispersal limitations; and the interac-

tion term between environment and spatial structure repre-

sents covariation between environmental and spatial factors

that are difficult to tease apart (Borcard et al., 1992; Cotte-

nie, 2005) (Fig. 1a). This approach allows the study of dif-

ferent processes at different spatial scales, but suffers from

the problem that the spatial component is difficult to inter-

pret (e.g. Meynard et al., 2011). Indeed, the spatial structure

that is independent of the environment could always be jus-

tified by a lack of knowledge regarding the relevant environ-

mental variables, one or several of which could have been

left out of the analysis (Borcard et al., 1992; Meynard et al.,

2011). Conversely, the variance that is attributed to environ-

mentally correlated spatial structure could arise from dis-

persal limitations that happen to occur in a spatially

structured environment (Fig. 1a). Finally, the third approach

to link ecological patterns and metacommunity theory

involves the use of a site-by-species incidence matrix to test

for specific elements of metacommunity structure (Leibold

& Mikkelson, 2002).

Randomization tests on these matrices as well as turnover

and nestedness analyses allow us to test whether observed

elements of metacommunity structure are different from

chance expectation, and whether species replace each other

along consistent environmental gradients (Fig. 1b). This

approach was recently proposed as an integrated framework

for the study of metacommunities (Presley et al., 2010).

More specifically, a combination of statistical tools allows us

to determine, for example, whether or not species show indi-

vidualistic responses to environmental gradients (i.e.

Gleasonian view) or whether communities are actually

changing more or less consistently through groups of species

that respond in a similar way to environmental gradients

(i.e. Clementsian view). Although this approach is appealing
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because of its links to ecological theory, to our knowledge it

has not been tested on the same data set as the partial

regression approach. Moreover, some of the potential out-

comes in the analysis remain without ecological interpreta-

tion (Fig. 1), making the translation between pattern and

theory uncertain. Because the two approaches provide com-

plementary tests regarding the relative roles of the main driv-

ing processes in metacommunity theory, using them together

may lead to a better understanding of metacommunity driv-

ing processes.

Here, we used variance partitioning and analysis of meta-

community structure on the site-by-species incidence matri-

ces to test (1) whether or not the patterns of community

structure and environmental influences are consistent across

resolutions, and (2) whether the joint use of the two statisti-

cal approaches mentioned above provides a consistent and

complementary interpretation of results. We also used spatial

regressions to identify relevant environmental predictors for

species richness at different resolutions and to link regression

and metacommunity structure results. We used a compre-

hensive database of alpine grassland plants, including more

than 2600 plant species, 30 years of exhaustive community

plot surveys in 12,000 sites, plus more than 1 million pres-

ence-only records across the French Alps, and an exhaustive

environmental database including climate and soil character-

istics over a 30-year period. We show below how variance

partitioning and the analysis of metacommunity structure

can provide complementary results, improving our under-

standing of community assembly across resolutions.

MATERIALS AND METHODS

Plant community data

Species composition data were provided by the French

National Alpine Botanic Conservatory (CBNA: http://

www.cbn-alpin.fr/, data downloaded October 2010; see also

Boulangeat et al., 2012). The database contains information

on almost 12,000 community plots over the French Alps

(Fig. 2), and records for more than 2600 plant species. The

community plots include exhaustive species lists for plots

surveyed between 1980 and 2009, which we term here ‘com-

munity data’. We filtered these data for standardization pur-

poses: we considered only grassland plots of known size

classes, and checked for spatial accuracy (< 200 m) and the

botanical expertise of the observers (see also Boulangeat

et al., 2012). The database was also validated through multi-

ple consultations with taxonomic experts and field biologists.

This resulted in 2544 community plots of grassland habitat

of intermediate size (10–1000 m2) available for the analysis.

When aggregating data at different spatial scales (see

below) we also added occurrence records from the CBNA

database, and checked for consistency and accuracy as

described above (here termed ‘occurrence data’). These are

presence-only records of species across the French Alps over

the same 30-year period but that were not necessarily part of

an exhaustive community survey. This database includes

more than 1 million records of species occurrences distrib-

uted across the entire region of the French Alps.

(a) (b)

(c)

Figure 1 The two metacommunity analyses used in this study of grassland plant communities within the French Alps. (a) Variance

partitioning allows the identification of relevant environmental predictors structuring species composition and separation of the effects
of environmental filtering from that of dispersal. However, the interaction term between spatial structure and environmental predictors

as well as the unexplained variance in the models give ambiguous results with respect to the four metacommunity processes (dispersal,
environmental filtering, biological interactions, and stochastic colonization–extinction dynamics). (b) Analysis of metacommunity

structure through coherence, range turnover and boundary clumping using the site-by-species incidence matrix allows some observed
patterns to be linked to their possible causal processes: random assembly (non-significant coherence), competitive exclusion (negative

coherence) and environmental filtering (Gleasonian or Clementsian responses to environmental gradients). However, some other results
cannot be clearly linked to the four metacommunity processes (grey boxes in the figure), and it may be possible that competition and

environmental filtering may explain some of them as well. (c) Summary of the processes that can be distinguished by using one or the
other type of analysis, showing that their combination opens new avenues in metacommunity analyses. n.s., non-significant.
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Because of the completeness of this database and the

extent of the study area (Fig. 2), which includes an impor-

tant elevational gradient and relevant environmental gradi-

ents, this data set provides a unique opportunity to test

ecological patterns at intermediate scales (i.e. larger than a

single community, < 1000 km), at which the metacommuni-

ty provides a relevant theoretical framework (Holyoak et al.,

2005).

Environmental data

Given the abundant literature on the potential drivers of spe-

cies richness (e.g. Currie, 1991; Thuiller et al., 2006; Ander-

son et al., 2007), we included variables related to habitat

heterogeneity (topography and climatic variability), energy

(moisture index) and favourableness (soil, mean annual tem-

perature). More specifically, we considered climate temporal

mean and standard deviation summarized over a period of

30 years, soil properties such as percentage calcareous soil,

depth and moisture index, topography, and synthetic biolog-

ical variables such as growing degree-days (see Appendix S1

in Supporting Information). These variables have previously

been shown to shape species distributions and affect commu-

nity structure in Alpine plants (e.g. K€orner, 1999; Dullinger

et al., 2007, 2012).

Spatial scales

We used equal-area square grids to aggregate plant commu-

nity plots and calculate species richness or build site-

by-species incidence matrices at various resolutions (Fig. 2).

Five spatial aggregation grains (here grain and resolution are

used interchangeably) were considered: 1, 5, 10, 20 and

30 km (therefore the area varied from 1 to 900 km2). Multi-

ple-occurrence data (coming from community plots or from

occurrence records) that fell within one single grid cell were

aggregated as a single-occurrence entry (Fig. 2). Because this

strategy resulted in a different sampling effort between differ-

ent grid cells, we carried out a simple standardization based

on (1) eliminating from the analysis the grid cells that con-

tained too few community plots (the minimum number of

plots depended on the resolution, going from 3 plots at

1-km resolution to 30 plots at 30-km resolution), and (2)

randomly selecting the same number of community plots for

all remaining grid cells for the statistical analysis. This

ensured that the grid cells considered for the analysis were

surveyed thoroughly and that all grid cells had the same

sampling effort. Additional occurrence data were overlaid on

those grid cells to reduce the chances of false absences

(Fig. 2). The environmental information for all community

plots within each grid cell was aggregated using the mean

x
x

x

Site Species 1 Species 2 ….

Site 1 0 1 0

Site 2 0 0 0

… 0 1 0

(1) Grid overlay over survey plots

(2) Select grid cells(3) Add occurrences

(4) Generate presence/absence table

Figure 2 Study area and spatial aggregation strategy. The French Alps are located in south-eastern France. (1) Regular grids of cells of
different resolutions (1, 5, 10, 20 and 30 km) were overlaid over exhaustive vegetation survey plots from the CBNA community plot

database. (2) Grid cells containing a minimum number of community plots (3, 5, 10, 20 and 30 community plots, respectively) were
selected for further analyses (and the rest discarded) to ensure good sampling coverage of each grid cell considered in the analysis. In

this example, only the upper right grid cell (thicker black contour) was selected, given that it was the only one with more than five
community plots (represented here as grey dots). (3) Grid cells remaining in the analysis were further complemented with additional

occurrence data (i.e. presence-only data, not coming from exhaustive community plots) from the CBNA occurrence-only database, and
are represented here as crosses. (4) A table considering only grid cells selected in the previous steps (here called ‘sites’) was generated, in

which each species received a presence (1) or absence (0) code, regardless of the number of occurrences.
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and standard deviation of the environmental conditions of

the community plots.

Environmental factors explaining species richness

We calculated the number of species for each grid cell at

each resolution, and modelled species richness as the

response variable in all regressions. Spatial autoregressive

(SAR) models were used to incorporate the effects of spatial

structure because they allow the modelling of spatial effects

as well as the incorporation of environmental predictors into

the analysis. As in other regression analyses, the response

variable is modelled as a function of explanatory variables

plus an error term. However, in an SAR model, the error

term (ei) is modelled as a function of space:

ei ¼
X

bijei þ ei; (1)

where bij represents the spatial dependence between sites and

is used to model the spatially dependent error, and ei repre-
sents the independently distributed residual error (assumed

to be normally distributed). SAR models were first built here

by incorporating the effects of the spatial autocorrelation in

the absence of other (environmental) predictors. We fitted

several SAR models by using two different shapes of the spa-

tially dependent component (1/x and 1/x2, where x repre-

sents the distance between sites) and several maximum

distances (from 50 to 200 km, in 50-km intervals) to con-

sider in the spatial autocorrelations. As recommended in

Kissling & Carl (2008), the spatial model (combination of

shape of autocorrelation as a function of distance and maxi-

mal distance considered) was chosen to minimize the Akaike

information criterion (AIC), therefore imposing a penalty for

models with too many parameters. The environmental pre-

dictors were then added to this spatial model using a for-

ward selection strategy. Initially we considered a total of 27

environmental variables (Appendix S1) as potential predic-

tors in the statistical analysis. To select a subset of relevant

variables, we started with a minimal model including the

spatially dependent term and one environmental predictor.

The predictor chosen to stay in the model was the one that

maximized the Nagelkerke pseudo-R2 (Nagelkerke, 1991),

which is the estimate of variance explained provided with

the SAR models. Its calculation is based on log-likelihoods

rather than on residual variance, but its interpretation is

equivalent to the unadjusted R2 in classical linear regressions.

Once a variable entered the model, all other variables that

were strongly correlated with it (|Pearson’s r| > 0.8) were

excluded from further consideration. Then a second predic-

tor was chosen to maximize the model R2. The process went

on until the variable added became non-significant in the

model (P-value > 0.05) or until the variable added did not

significantly increase the predictive power of the model

(Crawley, 2007). SAR models were built using the errorsarlm

function within the package spdep in R 2.13.1 (R Develop-

ment Core Team, 2011).

Variance partitioning on community data

Variance partitioning applied to the study of community

structure allows the effects of the spatial structure that are

independent of the environmental gradients (and therefore

attributed to dispersal) to be isolated from the environmental

effects that are independent of that spatial structure (and

therefore attributed to environmental filtering) (Fig. 1a)

(Legendre & Legendre, 1998; Cottenie, 2005; Tuomisto &

Ruokolainen, 2006; Meynard & Quinn, 2008). However, this

partitioning always leaves some variation that is shared

between environment and spatial structure and that is diffi-

cult to attribute to either one of the two processes (Fig. 1a).

This interaction could represent, for example, a dispersal

effect that is correlated with topography, or the joint effect

of several environmental factors that have a similar spatial

structure. However, variance partitioning does not allow the

presence of stochastic assembly or of biological interactions

to be tested directly (Fig. 1a,c). Here, we used the function

varpart within the package vegan, which applies a partial

redundancy analysis (RDA) to partition variance between

spatial and environmental components (Borcard et al., 1992;

Cottenie, 2005). The environmental effects were represented

by the variables selected at each resolution in the regression

analyses described above, and the spatial effect was repre-

sented by a third-degree polynomial of geographical coordi-

nates (Borcard et al., 1992). The total variance explained can

thus be partitioned between the effects that are exclusive of

environmental factors, those that are exclusive of spatial

structure (i.e. dispersal) and those that result from the inter-

actions between spatial and environmental structure (Legen-

dre & Legendre, 1998) (Fig. 1b).

Elements of metacommunity structure using

site-by-species incidence matrices

The second analysis was aimed at studying elements of meta-

community structure along environmental gradients using

the metacommunity framework originally proposed by Lei-

bold & Mikkelson (2002) and subsequently modified by

Presley et al. (2010). Here we interpreted results according

to Presley et al. (2010), and used matlab scripts made avail-

able by the authors at http://faculty.tarleton.edu/higgins/

metacommunity-structure.html (accessed 18 November

2010). Three types of patterns of metacommunity structure

were analysed in the data: (1) coherence, which corresponds

to the level to which different species are structured and

respond to the same environmental gradient; (2) species

range turnover, which corresponds to how often species

ranges replace each other; and (3) boundary clumping, which

corresponds to how often multiple species have their range

limits in the same sites (Presley et al., 2010). The first step in

the analysis consists of ordering the site-by-species matrix

using reciprocal averaging (RA, i.e. a regular canonical corre-

spondence analysis using only the site-by-species incidence
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matrix without environmental predictors). This first step

allows the identification of one or more RA axes that pro-

duce structure among communities. This produces an

ordered site-by-species incidence matrix that is compared

with random expectations through randomization, which

allows coherence to be characterized as non-significant

(random community assembly), significantly negative (check-

erboard pattern where some species avoid each other, reflect-

ing competitive exclusion) or significantly positive

(communities are structured along environmental gradients,

either individualistically or by groups of species that respond

similarly to the environment) (Fig. 1b). In most cases, coher-

ence is positive and the use of the other two indices helps in

determining whether individualistic (Gleasonian) or synchro-

nous (Clementsian) species turnover is important (Presley

et al., 2010), and whether or not there are nested subsets of

species along the environmental gradients (Fig. 1b). Note,

however, that while some elements of community structure

provide a clear link to one of the four processes associated

with metacommunity theory, other results do not (e.g.

nested and evenly spaced structures in Fig. 1b). Moreover,

the fact that competitive exclusion produces checkerboard

patterns, for example, does not preclude the possibility that

other forms of competition could produce other metacom-

munity structures.

We carried out the same analysis using the first and sec-

ond axes of an RA analysis on the site-by-species incidence

matrix (Presley et al., 2009) at each resolution. We used

default settings for all other parameters (see Presley et al.,

2010 for details, and references therein). We also calculated

Spearman’s rank correlations between the RA axes and rich-

ness as well as to the environmental predictors available to

relate metacommunity structures to the environmental gradi-

ents present in the study region (Presley et al., 2009, 2010).

The effects of dispersal cannot, however, be teased apart

using this approach (Fig. 1b,c).

RESULTS

Environmental factors explaining species richness

The total variance explained increased at coarser resolutions,

with R2 = 0.26 at 1-km resolution and R2 = 0.63 at 30-km

resolution (Table 1). The environmental variables selected

varied across resolutions (Table 1). For instance, at 1-km

resolution the selected variables were mean values of temper-

ature, slope and elevation, while at 30-km resolution the

most important variables were related to spatial heterogene-

ity (summer moisture and temperature of coldest months;

Table 1). At least one variable reflecting environmental het-

erogeneity (temporal or spatial) was selected in each model,

although the relationship to species richness could be posi-

tive as well as negative depending on the variable and scale

(Table 1). For example, the annual standard deviation of

temperature of the coldest month had a negative effect on

species richness at 1-km resolution, but a positive effect at

30-km resolution. However, at 30-km resolution, the only

other variable selected – the spatial standard deviation on

the summer moisture index – had a negative effect on rich-

ness (Table 1).

Variance partitioning on community data

As with species richness, the variance explained on commu-

nity data at coarser resolution was higher than at lower reso-

lution (Fig. 3, black squares). The role of the spatial

component after controlling for environment (i.e. the role of

dispersal, white diamonds in Fig. 3) increased from 5% at 1-

km resolution to 27% at 30-km resolution, while the role of

the environment decreased from 5% to 0 (Fig. 3, white

squares). The interaction term remained low as compared

with the purely spatial effect (Fig. 3, black triangles), and

the effect of the environment (after controlling for spatial

Table 1 Results from a spatial autoregressive (SAR) modelling

on species richness in grassland plant communities within the
French Alps. Only the environmental variables selected on a

forward stepwise selection are shown at each resolution. Values
in each column represent the estimated coefficient value for each

variable, with the corresponding standard error and significance
level (P-value). At each resolution we also show the number of

grid cells in the analysis (n), the number of community plots
per grid cell, and the total explained variance (R2).

Estimate � SE P-value

1 km (n = 284, 3 plots per cell, R2 = 0.26)

Intercept 27.86 � 0.34 <0.001
Temperature of coldest month 3.22 � 0.33 <0.001
Slope 1.73 � 0.23 <0.001
Elevation �1.55 � 0.27 <0.001
YSD temperature of coldest month �1.63 � 0.36 <0.001

5 km (n = 121, 5 plots per cell, R2 = 0.29)

Intercept 364.47 � 13.85 <0.001
SSD growing degree-days 24.39 � 8.96 0.006

Percentage calcareous soil 27.99 � 10.77 0.009

Topographic wetness index �33.45 � 10.04 <0.001
YSD annual precipitation �37.23 � 12.42 0.003

10 km (n = 69, 10 plots per cell, R2 = 0.60)

Intercept �239.65 � 360.62 0.51

SSD growing degree-days 0.04 � 0.01 0.001

YSD annual temperature 165.54 � 56.14 0.003

SSD percentage calcareous soil 2.23 � 0.59 <0.001
Elevation 0.20 � 0.08 0.010

YSD annual precipitation �0.87 � 0.26 <0.001
Percentage calcareous soil 0.80 � 0.27 0.003

SSD topographic wetness index �96.18 � 41.05 0.019

20 km (n = 37 grid cells, 20 plots per cell, R2 = 0.47)

Intercept 834.12 � 45.18 <0.001
YSD annual temperature 74.38 � 20.18 <0.001
SSD percentage calcareous soil 52.24 � 18.30 0.004

30 km (n = 25 grid cells, 30 plots per cell, R2 = 0.63)

Intercept 962.39 � 49.14 <0.001
SSD temperature of coldest month 55.60 � 15.02 <0.001
SSD summer moisture index �47.95 � 17.93 0.007

SE, standard error; SSD, spatial standard deviation; YSD, yearly stan-

dard deviation.
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structure) became non-significant at 30-km resolution

(ANOVA on 200 permutations, P-value = 0.5).

Elements of metacommunity structure using

site-by-species incidence matrices

The elements of metacommunity structure on the first and

second reciprocal averaging (RA) axes showed very consis-

tent results across scales: positive coherence

(P-value < 0.001); positive turnover (P-value < 0.001); and

significant clumping (P-value < 0.001) at all scales. In other

words, communities are responding to consistent environ-

mental gradients, here represented by the two RA axes;

groups of species have coincident species range boundaries;

and species composition changes consistently in similar

places of the same environmental clines (Clementsian struc-

ture, see Fig. 1).

This analysis revealed that at least two RA axes reflect

different metacommunity structures, both supporting a

Clementsian response to common latent environmental gra-

dients. Because reciprocal averaging groups sites by similar-

ity in species composition, and groups species by their

similarity in occurrence patterns (Presley et al., 2010;

L�opez-Gonz�alez et al., 2012), we found it useful to look at

the correlations between the RA axes site scores and rich-

ness, and between the RA axes and environmental predic-

tors. While the first axis showed significant positive

correlations with richness at all resolutions (Table 2), the

second axis showed a significant negative correlation with

richness only at 1-km resolution (results not shown). This

makes it more difficult to interpret the second RA axis in

relation to the regression results, and we therefore focus on

the first RA axis from now on. Correlations between RA

axes and the various environmental predictors were numer-

ous and did not allow us to single out a few environmental

drivers among the large set of predictors available

(Table 3). However, the strongest correlations were fairly

consistent across scales. For example, positive relationships

can be observed with mean annual temperature, growing

degree-days and mean temperature of the coldest month

across all scales. Negative correlations included spring, sum-

mer, autumn and annual moisture index, and temporal

standard deviation on autumn moisture index (Table 3).

Different measures of temporal and spatial standard devia-

tion showed negative as well as positive correlations with

the first axis at all scales. However, the overall spatial heter-

ogeneity seemed to have a positive effect at all scales,

whereas temporal variability on some factors (annual pre-

cipitation and autumn moisture index) seemed to have a

negative impact on the first axis (Table 3).

Figure 3 Variance partitioning of species composition at various spatial scales in grassland plant communities within the French Alps.

While the total variance explained (black squares) reflects the R2 for a redundancy analysis (RDA) including the spatial as well as the
environmental components, the other curves represent the results from a variance partitioning: the R2 that can be attributed to the

environment after controlling for spatial structure (white squares), the R2 that can be attributed to spatial structure (i.e. dispersal) after
controlling for the environment (white diamonds), and the interaction between spatial structure and environment (black triangles),

which can be attributed to either environmental influences that are spatially structured or to dispersal effects that are environmentally
structured. n.s., non-significant (ANOVA permutation test, P-value > 0.05).

Table 2 Correlation values between richness and the first axis

of the reciprocal averaging (RA) calculated within a
metacommunity structure analysis based on the incidence-

by-site matrix in grassland plant communities within the French
Alps. Values represent Pearson correlations and the

corresponding P-values for each resolution studied.

Resolution Correlation P-value

1 km 0.42 0.037

5 km 0.44 0.007

10 km 0.35 0.003

20 km 0.40 < 0.001

30 km 0.35 < 0.001
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DISCUSSION

Our study is unique in bringing together two types of statis-

tical analysis that have traditionally been used separately to

infer metacommunity driving forces. By using them system-

atically on the same data set and at different spatial resolu-

tions, we are able to show their complementarity in relating

the four main processes proposed within the metacommuni-

ty framework (dispersal, biological interactions, environmen-

tal filtering and stochastic events) to the observed patterns.

However, the interpretation of results from the two strategies

is not straightforward, and the regression analysis on rich-

ness, which is not strictly necessary in this context, will help

us to interpret and discuss the links between variance parti-

tioning and community structure analysis.

Certainly one of the most puzzling results in our study is

the fact that variance partitioning points to a strong role of

dispersal that increases at coarser resolution (Fig. 3), while

metacommunity structure analysis based on site-by-species

incidence matrices points to a Clementsian community

assembly that is very consistent across scales, and therefore

to a strong role for environmental filtering. Although this

difference may appear at first to be a contradiction, it actu-

ally shows the complementarity between the two approaches.

Indeed, metacommunity structure analysis based on site-

by-species incidence matrices cannot detect the effects of

dispersal, even if they exist (Fig. 1b). Presley et al. (2010)

recognized that this was a shortcoming of the method. The

only way dispersal could potentially be detected in this type

of analysis would be if dispersal effects were correlated with

the latent environmental gradient identified in the RA axes

as structuring the metacommunity. However, this would

require a strong interaction between the relevant environ-

mental gradient and the dispersal effects. Here, the variance

partitioning analysis showed a strong effect of dispersal that

is independent of environmental gradients, and an interac-

tion term between environment and spatial structure that

remains small compared with the spatial effect, especially at

coarser resolution (Fig. 3). Therefore our results suggest that

dispersal effects need to be analysed separately in order to be

detected, and variance partitioning provides a useful tool to

complement analyses based on metacommunity structure in

this direction.

One of the disadvantages of the metacommunity structure

analysis is the difficulty in interpreting the structuring axes

that result from the reciprocal averaging and their correlation

with environmental gradients. By optimizing site and species

order in the site-by-species incidence matrix, reciprocal aver-

aging will result in a first axis that would be correlated with

species richness when the site-by-species matrix is nested.

This correlation is not universal, however, and should not be

significant in random assembly scenarios nor in loosely

nested metacommunities. Here we found a significant posi-

tive correlation between the first RA axis and species richness

across resolutions, despite the fact that the system is not

nested (positive turnover at all scales). This correlation makes

it possible to match the results from regressions based on

richness to the results from the site-by-species incidence

Table 3 Summary of correlations between the first axis of a reciprocal averaging on the occurrence-by-site matrix and environmental

variables in grassland plant communities within the French Alps. Values are the result of Spearman’s rank correlations for each
resolution; n.s., non-significant (P-value > 0.05); SD, standard deviation. For simplicity, we omitted variables that did not show

significant correlations at three or more aggregation scales, and we only show significant correlations.

Variable

Resolution

1 km 5 km 10 km 20 km 30 km

Mean values Growing degree-days 0.83 0.86 0.85 0.85 0.66

Annual temperature 0.83 0.86 0.83 0.82 0.64

Annual moisture index �0.42 �0.60 �0.52 �0.43 �0.82

Spring moisture index �0.48 �0.70 �0.65 �0.59 �0.82

Summer moisture index �0.51 �0.66 �0.62 �0.53 �0.86

Autumn moisture index �0.33 �0.52 �0.45 �0.37 �0.68

Temperature coldest month 0.81 0.81 0.76 0.75 0.58

Summer precipitation n.s. �0.33 �0.25 n.s. �0.58

Water-holding capacity 0.24 0.30 0.26 n.s. n.s.

Percentage calcareous soils 0.20 0.21 n.s. 0.35 n.s.

Solar radiation 0.25 0.26 0.42 0.49 0.51

Temporal SD Growing degree-days 0.81 0.85 0.87 0.87 0.65

Annual moisture index 0.47 0.45 0.52 0.50 n.s.

Autumn moisture index �0.20 �0.43 �0.37 �0.37 �0.57

Temperature coldest month 0.35 0.24 0.37 0.45 n.s.

Annual precipitation �0.22 �0.39 �0.31 n.s. �0.63

Annual temperature 0.59 0.68 0.69 0.75 0.83

Spatial SD Growing degree-days n.s. 0.22 0.39 0.69 0.42

Annual moisture index 0.16 0.25 0.49 0.65 n.s.

Spring moisture index 0.22 0.28 0.48 0.64 n.s.

Autumn moisture index n.s. 0.28 0.50 0.63 n.s.
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analysis in our study. However, in the absence of such a cor-

relation this matching would not be possible. Second, by

using univariate correlations between RA axes and environ-

mental factors we may be looking at superfluous relation-

ships. In a multivariate regression, we control the effect of

one variable with another. For example, at 1-km resolution

the effect of mean temperature during the coldest month on

richness is positive and significant. However, the effect of

mean temperature is also controlled for the effects of eleva-

tion, slope and temporal temperature variability (Table 1). In

the analysis of metacommunity structure, correlations of the

RA axes with all environmental variables may be significantly

positive or negative (Table 3) but they do not account for

the confounding effects of other variables. This also requires

the interpretation of multiple correlations simultaneously,

adding more complexity to the interpretation of results.

Although in this case the strongest correlations are highly

consistent across scales, the value of those correlations varies,

and the fact that we cannot single out a few variables along

the environmental gradient may be problematic. L�opez-

Gonz�alez et al. (2012) partly avoided this problem by carry-

ing out a correspondence analysis, this time considering the

incidence matrix and a reduced set of environmental vari-

ables. Although this is a valid alternative, the resulting axes

are correlated with the RA axes but are not exactly the same.

In the end, we still need to interpret multiple axes and multi-

ple environmental variables, where the effects of a few rele-

vant variables may be diluted by the noise introduced by

others.

By contrast, variance partitioning introduces a different

problem, namely that of variable selection. Here we have

chosen to use environmental predictors based on regressions

between richness and environmental factors within a forward

stepwise selection strategy. However, we note that using all

environmental predictors available without variable selection

produced very similar results (not shown), suggesting that

the same predictors capture fundamental variations in envi-

ronmental gradients.

Our results do not reveal any effects of stochastic events or

competitive exclusion at the finest resolutions studied here.

On the contrary, Clementsian patterns are consistent across

spatial resolutions. Spatial scale is usually described by two

components: spatial grain or resolution, and spatial extent

(Fortin & Dale, 2006). Presley & Willig (2010) studied bat

metacommunity structure in the Caribbean Basin, and found

that at the smallest spatial extents the metacommunity struc-

ture could differ between biogeographical regions, but that at

larger extents structures were all Clementsian. Similar results

were shown by Lewinsohn et al. (2006), wherein nestedness

could only be revealed at the largest extents. Here we only

varied grain, which could explain the consistency of patterns

across scales. Presumably, the inclusion of several biogeo-

graphical regions could result in different structuring forces.

However, it is particularly striking that environmental affinity

has such an important role in structuring alpine grassland

plant communities at all spatial resolutions. Tamme et al.

(2010) suggested that resolution may be more important to

detect mechanisms of coexistence because this aspect of scale

determines how ‘diluted’ species interactions are. Paradoxi-

cally, our results along with the previous studies mentioned

above suggest that extent, and not resolution, is more impor-

tant in determining the resulting community patterns

detected. In other words, different patterns found in previous

studies may well reflect varying driving processes when

including different biogeographical regions, rather than varia-

tions due to aggregating the data at different resolutions.

This point certainly needs further attention and would need

to be complemented with similar analyses across taxonomic

groups. However, this also reveals the importance of clearly

defining grain and extent when addressing spatial scale issues

in ecology (Fortin & Dale, 2006). The consistency of the

Clementsian pattern of species turnover suggests that envi-

ronmental filtering remains a structuring force throughout

scales and has important evolutionary implications. These

results suggest that, as individualistic as the species responses

may be, there must be some physiological or evolutionary

trade-offs associated with important environmental thresh-

olds, which will translate into similar species occurring and

disappearing at the same locations along environmental gra-

dients (Dahlgren & Ehrlen, 2011). This, along with the

increasing role of dispersal at coarser resolutions (Fig. 3), fits

well within the mass-effect metacommunity framework

(Shmida & Wilson, 1985; Mouquet & Loreau, 2002; Leibold

et al., 2004), where community composition is highly depen-

dent on environmental filtering, but where dispersal may also

have an important influence on it. A deeper understanding

of adaptive forces that are related to environmental filtering

processes would be necessary to better apprehend the rela-

tionship between dispersal and environmental filtering in this

context.

A last point that is worth discussing is the role of environ-

mental heterogeneity in structuring diversity at large spatial

scales. It has been previously recognized that heterogeneity is

important in several ways (Anderson et al., 2007; Lundholm,

2009; Tamme et al., 2010). Having very heterogeneous land-

scapes close together could increase turnover between sites,

because species occupying different types of habitats should be

different (Rahbek et al., 2007). In mountain ranges, for exam-

ple, sites above and below the tree line may be very close to

each other but support very different vegetation covers and

different faunas. The overall species diversity of such areas

could therefore be significantly higher than that in areas taken

exclusively below or above the tree line. However, the effects

of temporal heterogeneity may be different, as it has been

argued that more stable environments form cradles of diver-

sity over evolutionary time-scales, and species inhabiting more

variable environments throughout the year should also be

adapted to cope with those different environmental conditions

(Fjeldså et al., 1999). Furthermore, the effects of environmen-

tal heterogeneity on species richness should be positive at

some scales and negative at others (Tamme et al., 2010; Giladi

et al., 2011). Our results show mostly positive relationships of
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species richness with spatial variability, but negative relation-

ships with the temporal variability of some factors at all spatial

resolutions (Table 3), suggesting that the effects of spatial and

temporal variability depend on the environmental variable

considered. We suggest that those environmental variables

that impose important physiological stress would probably

limit species richness, because fewer species will be adapted to

such conditions, whereas those that promote habitat diversity

or environmental diversity without imposing physiological

constraints could have the opposite effect, for example

through a storage effect over time (Chesson, 1994).

Overall, the recent literature indicates that the use of sev-

eral analyses in conjunction, together with a combination of

indices or of statistical approaches, can give us better insights

into community assembly (e.g. M€unkem€uller et al., 2012).

Recent efforts to incorporate phylogenetic and functional

considerations into these types of analyses may provide fur-

ther insights into these processes (Cavender-Bares et al.,

2009; Mouquet et al., 2012). We showed here that this is also

true for variance partitioning and metacommunity structure

analyses, both of them providing complementary information

regarding the processes that are behind diversity patterns

(Fig. 1). Most notably, while metacommunity structure

analysis based on site-by-species incidence matrices allows us

to distinguish patterns from random expectations and

between different modes of environmental filtering (e.g. indi-

vidualistic species responses versus groups of species with

similar environmental responses), it would not allow any

roles for dispersal to be distinguished directly. On the con-

trary, variance partitioning suggests that dispersal does play a

preponderant role, and that this role increases at coarser reso-

lution. However, the interpretation of results is not straight-

forward, and complementary analysis on richness provides

insights into metacommunity structure by providing links

between the two approaches. This analysis also provides

strong support for a Clementsian community structure,

where species change consistently across environmental gradi-

ents, suggesting that there are important environmental

thresholds (i.e. places along the environmental clines where

many species have their distribution limit) that determine

community composition across resolutions. Finally, our work

also points to the importance of distinguishing between the

two axes of spatial scale, namely resolution and extent, in

ecological studies (Fortin & Dale, 2006). Comparison of our

results with previous studies suggests that this distinction is

crucial for understanding the role of spatial scale in commu-

nity assembly processes.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the

online version of this article:

Appendix S1 Full list of environmental variables considered

in the analysis.
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