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Abstract: To meet the COP15 biodiversity framework in Europe, one target is to protect 30% 
of land by 2030 through a resilient transnational conservation network 1,2. The European Alps 
are a key hub of this network hosting one of the most extensive natural areas and hotspots of 
plant biodiversity in Europe 3,4. Here, we assess the robustness of the conservation network to 
safeguard the European Alps’ flora by 2080 using semi-mechanistic simulations. Overall, we 
predict a shift in conservation need from lower to higher elevations through time as plants 
migrate upslope and shrink their distribution. While increasing species, trait, and evolutionary 
diversity, migration could also threaten 70% of the resident flora. Future expansions of the 
protected area network should ensure strong elevational connections, even those that span 
borders. 

 

 

 

 

 

 

 



Main Text: 

In line with the recent COP15 biodiversity framework of the Convention on Biological 

Diversity (CBD), the European Union (EU) seeks to implement a coherent and resilient 

transnational nature protection network by 2030 covering at least 30% of the EU’s land. The 

EU Biodiversity Strategy for 2030 1,2 specifies the necessity to improve the European protected 

area network by further implementing transboundary protected areas to effectively preserve 

biological biodiversity and nature contributions to people under global change in the future. 

Central to this conservation network, the European Alps are one of the largest semi-natural 

areas of the continent and a centre of plant diversity and endemism 3,4. Spread across seven 

countries, the Alps host ~4,500 vascular plant species – more than the third of the flora recorded 

in Western Europe – with around 400 endemic species 3, and unveils a long history of land use 

and geographical processes that has shaped evolutionary and phenotypic plant adaptations over 

time 5,6. 

Alpine and mountain ecosystems are altered by global change in a complex way 7–12. 

Many species are expected to migrate upwards increasing the risk of extinction for cold-

adapted alpine plants that have limited colonization opportunity and potentially suffering 

from competitive exclusion 13–15. In the European Alps, not only climate, but also land use 

change, is expected to affect this species redistribution, as agricultural land abandonment at 

high elevation and human activities such as intensification in the lowlands negatively impact 

mountain biodiversity in Europe 5,16. While protected areas (PAs) are static entities aimed at 

preserving biological biodiversity, their networks in mountain ecosystems are generally known 

to be biased towards higher elevations 17,18, with endangered species sometimes anticipated to 

naturally migrate within these networks 19. Therefore, the effectiveness of PAs is also 

dependent on climate change and changes in land use affecting natural areas, inside and outside 

these PAs. In this context, we must quantify how species are likely to migrate under global 

change 20, which species will become threatened, and how the current conservation network 

should be transnationally adapted to future species range shifts and local extinctions. 

Climate and land-use change are expected to influence different facets of biodiversity 

in different ways, requiring a multi-dimensional approach to conservation 19,21. Biodiversity is 

not only about individual species, but is rather about ‘diversity’— how many species are found 

in an area or conservation unit (species richness), how much evolutionary history is shared 

among those species (phylogenetic diversity) 22, and how diverse are their morphological traits 

and roles (functional diversity) 23. From a conservation planning perspective, it is useful to also 

consider how each local area contributes to the unique biodiversity of the region (e.g. species 

or functions not found elsewhere), that can be measured as species- 24, phylogenetic- 25, or 

functional endemism 26. Finally, ‘rarity’, which estimates scarcity of unique traits 27 or 

phylogenetic branches 28, also contributes to ‘diversity’ and deserve to be considered. It is 

therefore crucial that conservation planning embraces all these facets to optimize protection 

complementarity and irreplaceability between geographic areas. 

Here, we investigate the efficiency of the current European Alps’ PAs network, and of 
its potential transnational expansion, in protecting the plant multifaceted diversity and 

uniqueness of this region at present and for the 2050 and 2080 horizons, under biologically 

informed (realistic) dispersal, two Shared Socioeconomic Pathways (SSPs), seven Global 



Circulation Model (GCMs) and two land cover (LC) change scenarios. Using an ensemble of 

species distribution models (SDMs) for 1,711 plant species at 100-m resolution, a high 

coverage database of species traits and two mega-phylogenies, we predicted future changes in 

species distributional range, multifaceted diversity and uniqueness in the study area. We then 

identified conservation priorities for all types of diversity, areas where these priorities are stable 

into the future (overlap in current and future priorities), and areas that are critical for expanding 

the current PA network to meet the 2030 targets while achieving a resilient and effective 

conservation network. 

Upward shifts of multifaceted diversity 

Overall, our SDM approach demonstrates very good performance with an average True 

Skill Statistics and Boyce Index of the kept models ranging between ~0.6 and ~0.8 across the 

1,711 species considered. We show that the European Alps are predicted to lose between ~7 

and 16% of its total multifaceted diversity and uniqueness by 2080 (Fig. S1a-b). This loss is 

expected to occur primarily at low elevations (without accounting for colonization from other 

regions), with corresponding gains at higher elevations due to upward species range shifts, even 

by 2050 and under the moderate SSP245 scenario (Fig. 1). Changes are even more exacerbated 

for 2080, the worst case SSP585 scenario, and under unrealistic unlimited dispersal (Fig. S2a-

e). Our results are in line with previous research showing that most species are able to respond 

to climate change by migrating towards cooler temperatures 29–31, therefore increasing the 

short-term species richness of higher mountain strata 14,32,33. On the one hand, by extending 

these results to species traits and evolution, we show that upslope migrations not only infer a 

change in species richness but also in other biodiversity facets. On the other hand, these 

migrations also generally result in a decrease in species range size due to limited physical 

habitat area, consequently explaining the positive changes in multifaceted endemism and rarity 

that we uncovered at higher elevation 20,34. Additionally, we forecast that rural landscapes (e.g., 

permanent crops and pasture), which were found to harbour more plant diversity than forests 

and grasslands (Fig. S3), will suffer from future land abandonments with forest successions 

across large landscapes (Fig. S4). This corroborates previous studies uncovering the negative 

impact of land abandonment on biodiversity in the northern hemisphere 16, and further explains 

the future high loss of multifaceted plant diversity in the European Alps. 

 



 

Figure 1. | Change in multifaceted diversity and uniqueness by 2050 for SSP245 and realistic plant 

dispersal. First, second and third row depict the functional, taxonomic and phylogenetic dimension respectively. 

Spatial gains are shown in green, spatial losses are shown in purple. TD, rPD and rFD: taxonomic, relative 

phylogenetic and relative functional diversity (relative diversity represents the diversity expected under a given 

taxonomic diversity, see methods); WE, rPE and rFE: weighted taxonomic, relative phylogenetic and functional 

endemism respectively; PR and FR: phylogenetic and functional rarity. 

Species turnover and extinctions 

Overall, ~70% of species are predicted to lose areas of suitable conditions (‘losers’), 
especially in higher mountain strata (Fig. 2), and to a greater extent by 2080 under SSP585 

(Fig. S5a-c). The percentage of species losing the most their suitable habitat increases from 

2.1% by 2050 under SSP245 (Fig. 2) to 16.1% by 2080 for SSP585 (Fig. S5c). Many lowland 

species are instead forecast to experience strong range expansion (‘winners’, Fig. 2) with larger 
gains by 2080 for SSP585 (Fig. S5a-c). The percentage of species expanding the most their 

suitable habitat increases from 0.6% by 2050 for SSP245 (Fig. 2) to 4.2% by 2080 under the 

worst case SSP585 scenario (Fig. S5c). On the one hand, the range losses illustrate how loser 

species that are generally more restricted to specific environmental conditions are forced to 

migrate upwards, losing physical habitat area, facing more physical barriers to dispersal, and 

therefore suffering from local population extinction (‘dispersal lags’) 15,20,35. On the other hand, 

the range expansions illustrate winner species that are abler to adapt to novel environmental 

conditions (e.g. thermophilic generalist species), inhabiting the lowlands, therefore conserving 

more range and expanding their distribution towards higher latitudes and elevations in the 

future 14,15,36,37. This progressive species replacement across elevations is generally expected 

to increase over time and with increased global change 14,15. Our results suggest that by the end 

of the 21st century, this climate-induced turnover will intensify, likely homogenizing the 

European Alps’ plant communities (Fig. S5a-c) and possibly driving two plant species to 

extinction (Antirrhinum latifolium and Iberis saxatilis, Table S1). However, since we did not 



account for competition between plant species in this study, we lack inclusion of important 

drivers of population dynamics, and perhaps underestimate potential extinction 38. 

 

Figure 2. | Species range shifts by 2050 for SSP245 and realistic plant dispersal. The scatter plot depicts for 

each species (points) its 95th percentile of extracted elevation values in function of its future range gain or loss 

(light green and purple background respectively). Flora Alpina (FA) elevation classes were additionally assigned 

to each species (nival: blue, alpine: brown, sub-alpine: red, montane: yellow, colline: green) and point density 

contour lines were drawn for further clarity. Upper barplots summarize for each gain/loss interval the total 

proportion of species present (%, grey bar plots) and the relative distribution of each elevation class within. 

Transnational conservation strategy 

In the face of important regional changes in climate and land use, comprehensive 

conservation planning must be implemented with a transnational conservation strategy that 

mutually emphasizes local and regional conservation optimizations. On the one hand, local 

conservation optimization in the Alps might need little European coordination as it should 

focus on maximizing the local biodiversity of the region; i.e. local hotspots. On the other hand, 

regional conservation optimization (maximizing the biodiversity of the entire Alps) requires 

more transnational strategies that are implemented less often due to insufficient conservation 

coordination in Europe 39. Transnational strategies should thus be improved towards 

coordinating complementary local and regional protective actions across distinct localities and 

nations, which comprise very different sets of species communities, evolutionary histories, and 

ecological functions 26. 



 

Figure 3. | Current and future local conservation needs in the European Alps for SSP245 and realistic plant 

dispersal. Pure colours of blue, green and red stand for largest conservation needs identified across pixels for 

present, 2050, and 2080, respectively. Local needs were constructed based on the current, 2050 and 2080 

simulations of reserve network expansion employing the ABF prioritization algorithm (maximizing local 

diversity), stretched by scaling each of the three RGB colour layers and mapped as a RGB composite. Mixed 

colours express equally important conservation needs for two times, whereas grey stands for needs in all three 

times (current IUCN I-II and Natura 2000 PAs network included). 

Local conservation 

For local conservation strategies, we find that future conservation needs to clearly 

follow the expected upward shifts of plant multifaceted diversity and uniqueness under the 

moderate SSP245 (Fig. 3) and pessimistic SSP585 scenario (Fig. S6). Based on these results, 

a first clear common EU conservation strategy for the European Alps involves accommodating 

future plant upward migrations by increasing protected area connectivity between elevation 

strata. In addition to the needs for adaptive conservation in the central Alps, we also found 

areas of relative stability (overlapping priorities for expansion in the present and future) in the 

Mediterranean Alps (Fig. 3). The Mediterranean region is an endemic hotspot in Europe and is 

composed of distinct range-restricted and unique species 40,41. Despite forecasted biodiversity 

loss, this region is still predicted to harbour high levels of multifaceted diversity and uniqueness 

in the future (Fig. S7-10) that are still essential to protect. Overall, similar results were also 

found when considering conservation needs under simulations that did not initially include 

current PAs (Fig. S11a-b). This emphasizes that the current PA network is insufficient to 

conserve biodiversity and requires adaptations to operate optimally under novel environmental 

conditions. 

 



 

Figure 4. | Distribution of the current protected areas (PAs) network of the European Alps and its future 

(top 20%) regional expansion for SSP245 and realistic plant dispersal. (A) Left panel depicts the geographic 

distribution of the Alps over France, Switzerland, Germany, Austria, Slovenia and Italy, and the right panel 

anticipates the conservation overlaps when expanding the reserve network for present, 2050 and 2080 (top 20%). 

Top predicted expansions were constructed based on the current, 2050 and 2080 simulations of reserve network 

expansion employing the CAZ prioritization algorithm (maximizing regional diversity). (B) projects the 

conservation convergence found in (a) but distributed across each national entity (% area) and elevation strata. 

The current network covers ~20% of the study region and is displayed in striped green. Orange defines top 

expansion convergences for two timelines, whereas green is for all timelines. 

Regional conservation 

For regional conservation strategies, spatial future conservation needs were found to be 

similar although more distinct (Fig. S11c-d). While this corroborates the urgency to 

improve connectivity of PA across elevations in the European Alps, this also stresses the 

urgency for better transnational conservation in the region. In line with the COP15 diversity 

framework, we chose the top 20% of regional conservation expansions for current, 2050 and 

2080 to project conservation overlaps, that would expand the present PAs network to ~30% of 

the European Alps’ area, under SSP245 (Fig. 4) and SSP585 scenarios (Fig. S12). PAs are 

often biased towards higher elevation 18 and are generally known to be well-adapted to species 

upward migration induced by global change 19. On the one hand, we confirm this tendency as 



the current reserve network of the European Alps is predicted to better protect the species 

distribution of higher elevation strata for future timelines and SSP scenarios (Fig. S13-16). On 

the other hand, we detected for both SSP scenarios strong spatial (Fig. 4a) and political (Fig. 

4b) divergence in optimized PA expansion, which calls for a more coherent and coordinated 

transnational PA network across the European Alps. As a result, the ideal contribution 

by France, Germany, Italy, Slovenia, Austria, and Switzerland to such an optimized strategy 

differ strongly among elevation belts. To balance optimal transnational contributions, 

Switzerland would be expected to bear the largest efforts in expanding the network across all 

elevation strata due to its very low PA coverage (~2% of the network, Fig. S17). Austria would 

be expected to increase its PAs mostly at mid-elevation. France and Germany would be 

expected to redirect a higher focus on lowlands, where France could best contribute to a 

transnational strategy by focusing on PAs in the Mediterranean Alps (Fig. 4a). This latter 

statement is also valid for Italy and Slovenia who would best contribute to a complementary 

PA network optimization by solely focusing on low to mid elevations. 

Northward shifts of multifaceted diversity 

Lowland Mediterranean species were also detected to strongly expand their 

distributional range towards higher latitudes (Fig. S18), which stresses the necessity of 

increasing reserve connectivity between the Mediterranean Alps and the central Alps. Species 

migration towards higher latitudes under global change is well documented and is expected to 

increase with climate change 13,30,31. Consequently, by the end of the 21st century, the 

Mediterranean flora is expected to confront increasing northern barriers to dispersal, by 

perishing, shifting, or expanding their range upslope, dependent on their abilities to migrate, 

adapt to varied environmental conditions, or compete with other species. This northward 

migration will face a bottleneck as only few corridors exist for northward expansion, which 

could result in a similar depauperation of the Mediterranean flora as did Quaternary climate 

oscillation to the Tertiary flora 42. Carefully conserving areas adjacent to the Mediterranean 

region such as the European Alps or the Pyrenees are therefore the most promising, if not the 

only, way to conservation of this species rich environment. 

 

 

 

 

 

 

 

 



Methods: 

Study area and observations 

Study area 

The study area covered the European Alps, as defined by an enlarged version of the official Alpine 

Convention perimeter 43. The enlargement consisted of adding Switzerland entirely, as well as two 

French departments i.e. Ain and Bouches-du-Rhône for which we had well-documented species 

observations. Additionally, we extracted the International Union for Conservation of Nature (IUCN) 

category I-II and Natura 2000 protected areas (PAs) of the study area from the World Database on 

Protected Areas (WDPA; http://protectedplanet.net/). 

Observations 

The observational dataset used in this study was compiled from more than 77 individual sources, with 

largest contributions from the National Data and Information Centre on the Swiss Flora (InfoFlora; 

~52%), and the Global Biodiversity Information Facility (GBIF, http://www.gbif.org/; ~29%) (see 

Table S2 for more information). All datasets were merged after unifying the species taxonomy, and 

after severely filtering inaccurate GBIF geo-referenced observations. 

More specifically, to extract GBIF information and merge all datasets, a large list of synonyms 

of all the plant species occurring in the European Alps was generated by compiling and web-scraping 

information from different sources: The Catalogue of Life (http://www.catalogueoflife.org/), the Plant 

List (http://www.theplantlist.org/) and the French National Alpine Botanical Conservatory (CBNA). To 

generate this list, a search was undertaken across 4490 accepted names referenced in the Flora Alpina 

Atlas 44 to obtain a total of 131.660 synonyms that were used as search inputs in GBIF to retrieve our 

online observations using the gbif.range R package 45. Only observations with a 100% confidence name 

matching and accurate to 11.1 meters were kept. GBIF provides a huge amount of georeferenced species 

distribution data, but many observations have considerable coordinate uncertainties, duplicated records, 

or misleading raster centroids. Therefore, strong spatial and resolution filtering needed to be applied to 

the online dataset to make sure that no biased species observations would be used in our models. The 

filtering involved mainly: selection based on GBIF’s basis of records (‘HUMAN_OBSERVATION’, 
‘LITERATURE’, ‘MATERIAL_SAMPLE’, ‘OBSERVATION’, ‘MATERIAL CITATION’ kept), 
removal of observation duplicates, removal of observations without coordinates, removal of absence 

records, removal of observations with equal latitude and longitude, removal of observations identified 

as having corrupted coordinates, removal of observations older than 1970, removal of coordinates with 

less than four decimals, and removal of raster centroid datasets 46. 

In total, the original observational dataset included 6'655'163 unique observations accurate to 

11.1 meters for 4’250 species (see Table S2, Fig. S19a) and 30% of records from the Global Biodiversity 
Information (GBIF; https://doi.org/10.15468/dd.mb6jzt). This set was further filtered according to the 

prevalence of each species (or proportion of 100 m pixels occupied); i.e. species occurring in less than 

30 pixels across the study area were removed. In total, the refined observational dataset included 3’167 
species used in model calibration (see Fig. S19b, Table S3 for further description). It is important to 

note that for species with > 10’000 observations, we sampled randomly without replacement a subset 

of 10’000 observations for better computation efficiency 47,48. Additionally, an independent and 

unbiased test dataset, reporting the empirical and distributional range of our 3’167 plant species over 
the European Alps, was constructed from expert-based information available in the Flora Alpina (FA) 
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44 and the extraction of the 5-95th percentiles elevation values of each species (see Fig. S20 for more 

information) 

Environmental Data 

Climate 

Four bioclimatic variables, known to have major ecophysiological effects on plant life 19,49,50, were 

extracted from the Climatologies at High resolution for the Earth’s Land Surfaces Areas (CHELSA 

v2.1) portal 51 (http://chelsa-climate.org/) and using the chelsa-cmip6 python library 52: growing degree 

days (GDD), annual precipitation (BIO12), temperature (BIO4) and precipitation seasonality (BIO15). 

These predictors were obtained at 1 km resolution, for current climate (time period 1981-2010), and 

future climate (2041-2060 and 2071-2090) for 14 CMIP6 scenarios; i.e., two Shared Socioeconomic 

Pathways emissions (SSP245, SSP585) – an updated equivalent of the Representative Concentration 

Pathways (RCPs) 4.5 and 8.5 respectively – and seven Global Climate Model scenarios (GCM; GFDL-

ESM4, MIROC6, AWI-CM-1-1-MR, EC-Earth3, IPSL-CM6A-LR, INM-CM5-0, MPI-ESM1-2-LR). 

Soil 

We derived soil property layers at a 100 m resolution over the study area by mapping ecological 

indicator values (EIVs) 53,54 in space following the method described in 54. First, we obtained plant EIVs 

for 4’489 species from Flora Alpina 44 and retained 2 different EIVs to characterize the local edaphic 

conditions: soil nitrogen (EIV‐N) and soil substrate composition (EIV‐G). EIVs of the Flora Alpina are 
ordinal variables consisting of 3 classes each (low = 1, medium = 2, high = 3) and associated estimated 

species frequency in the classes (not occurring = 0, rare = 0.5, frequent = 1). For each species, we 

calculated the average EIV value weighted by the frequency of the species in the EIV classes. Second, 

EIV values were combined to our unfiltered observational dataset (i.e. 6’655’163 observations of 4’250 
plant species) mapped on a 100 m grid. We removed duplicate observations of individual species per 

grid cell. Grid cells including at least ten species were then kept to calculate, for each EIV, a mean value 

across all species’ EIV values per grid cell. EIV models were then calibrated from these cells at 100 m 
spatial resolution with Random Forest 55 using seven predictors representing topography and geology 

(see Table S4 for the list of predictors), and were predicted across the study area at a 100 m grain. EIV 

models were evaluated using Spearman's rank correlation tests by partitioning the data into training 

(80%) and evaluation (20%) sets following 2 approaches: (i) five‐fold split‐sampling of the data and 
(ii) five‐fold spatial block cross‐validation 56 using five strata assigned across 25 regional clusters across 

the Alps. All generated EIV soil property layers showed excellent evaluations with Spearman r > 0.82 

(see Table S5). The generated EIV soil property layers are proxies of soil nitrogen and substrate 

composition, and have been shown to be excellent predictors of plant species distribution in SDMs 54,57. 

The obtained EIV soil property layers were proxies of soil nitrogen (NITROGEN) and substrate 

composition (CALCAREOUS%). It is important to note that given the unavailability of future predicted 

soil information, we considered current and future soil unchanged. 

Land cover 

Land cover (LC) is also known to have a strong influence on species distributions 5,58–60. Therefore, two 

LC change scenarios were obtained from the EU funded ALARM-ECOCHANGE and VOLANTES-

HERCULES projects 61–64 at 1 km resolution, each including 6 original (grassland, forest, built-up, 

cropland, permanent crops, others) and 10 reclassified LC categories respectively (pasture, semi-natural 

vegetation, forest, built-up, permanent crops, irrigated/non-irrigated arable land, recently abandoned 

http://chelsa-climate.org/


pasture/arable land, others; see Table S6). While current LC is derived from the CORINE 2000 

classification 65, future LC includes two emissions scenarios consistent with the SSP245 and SSP585 
66,67, namely, B1-SEDG (Sustainable European Development Goal) and A2-BAMBU (Business-As-

Might-Be-Usual), both available for the time period 2041-2060 (for ECOCHANGE and HERCULES) 

and 2071-2090 (for ECOCHANGE only). 

Correlation 

All predictors were projected to the standard Lambert Azimuthal Equal Area projection for Europe 

(EPSG:3035), and continuous current predictors (climate and soil) showed a Pearson’s inter-
correlations of |r| < 0.7 (see Fig. S21), as suggested when model projections outside the calibration 

range are involved 50. 

Observer bias correction 

Bias covariate correction 
 

Our observational dataset originated from a range of different sources which often lack sampling design, 

therefore, a strong geographic bias towards Switzerland and France was present in our refined 

observational dataset (see Fig. S19). To correct for this bias, three potential bias covariates were 

generated over the study area 48,68: the target group observation density, distance to roads and cities. (i) 

The target group observation density was constructed, based on the original observational dataset 

(6'655'163 observations for 4’250 species), at 100 m across the study area (see Fig. S19a). Distance to 
roads (ii) and to cities (iii) were generated based on OpenStreetMap (https://www.openstreetmap.org). 

All roads and cities of the study region were extracted from this source and converted into two binary 

100 m grids. Distances to roads and cities were then independently calculated with GDAL and python 

3.6 (function gdal.ComputeProximity, https://gdal.org/). All bias covariates were projected to 

EPSG:3035, after square root transformation 68,69. It is important to note that all bias covariates were 

weakly correlated with climate and soil; i.e. Pearson’s |r| < 0.3 (see Fig. S21). Environmental effects 

were therefore hardly masked by observer-bias effects during model calibration 69. 

Environmental bias correction 
 

Before data collection, appropriate sampling design should be environmentally stratified 70–73. 

Sampling frequencies in environmental space may in fact still remain skewed if species observations 

are not initially sampled according to an environmental stratification. Therefore to additionally address 

the environmental bias in the sampling design of our refined observational dataset (see Fig. S22), a 

recent corrective method, based on environmental stratified resampling of the observational dataset, 

was implemented before model calibration using the R function wsl.ebc 48. Environmental bias 

correction (EBC) corrects potential environmental bias in the design of an observational dataset, by 

artificially sub-sampling original species observations based on a chosen number of environmental 

clusters over the study area. Using the R function clValid (R package clValid) 74 and following 

recommendations of 48, we set the number of environmental clusters to 20, i.e. summarizing not too 

precisely the environmental space of the study area, yet, large enough to account for the its 

environmental complexity. Within the function wsl.ebc, we set the different parameters as follows: (i) 

ras = the four current climate and two soil predictors; (ii) pportional = TRUE, i.e. to apply EBC with a 

proportional stratified sampling design (or EBCp); (iii) plog = TRUE, i.e. EBCp should adopt a log 

consensus; (iv) sp.specific = TRUE, i.e. EBCp applies only for species subject to an environmental bias; 
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(v) sp.cor = 0.5, i.e. correlation threshold of the environmental bias; (vi) keep.bias = TRUE, i.e. per 

species and after EBC applies, the number of observations in the densest original cluster is reset to that 

of the densest corrected cluster; (vii) filter = FALSE; i.e. the observations are not filtered according to 

the ras resolution. In total, EBC applied to 1248 species. The resulting corrected observations and their 

environmental frequencies (before and after EBC) may be found in Fig. S23. 

Species distribution models 

Calibration 

For each species, model calibrations were done at 100 m resolution, by including current climate/LC (1 

km), soil (100 m) as well as our bias predictors (100 m), and were calibrated twice i.e., one model per 

categorical LC. 

We used a special type of presence-only SDMs, namely point-process models (PPMs). Point-

process models (PPMs) were employed for our analyses. PPMs are statistical models that may be used 

to analyze species presence-only data. Model output represents the intensity of the expected number of 

species occurrences per unit area, that is modelled as a log-linear function of the environmental 

covariates 68,75. At location 𝑠, the intensity 𝜆(𝑠) is thus given by: 

 lnλ(s) = 𝐱(s)′𝛃  [eqn 1] 

where 𝒙(𝑠) is the vector of the 𝑝 environmental covariates, and 𝜷 = {𝛽1, … , 𝛽𝑝} is the vector of the 

corresponding regression coefficients. Given the vector of n observations 𝒔𝑃 = {𝑠1, … , 𝑠𝑛}, PPMs are 

fitted via maximum likelihood, and the parameters are found to maximise 76: 𝑙(𝛃; 𝒔𝑃) = ∑ ln 𝜆(𝑠𝑖) 𝑛𝑖=1 −  ∫ 𝜆(𝑠) 𝑑𝑠 𝐴   [eqn 2] 

where the integral of the intensity over the entire study area A has to be approximated numerically. 

Such approximation requires the introduction of ‘quadrature points’, a set of points at which the 
intensity function is evaluated. As discussed in detail in 68, these points are needed to approximate the 

integral. The likelihood can thus be approximated as: 𝑙(𝛃; 𝒔𝑃) ≈ ∑ ln 𝜆(𝑠𝑖)𝑛𝑖=1 − ∑ 𝑤𝑗𝜆(𝑠𝑗)𝑛+𝑚𝑗=1   [eqn 3] 

   =  ∑ 𝑤𝑖 (𝑦𝑖 ln 𝜆(𝑠𝑖) − 𝜆(𝑠𝑖) 𝑛+𝑚𝑖=1 )  [eqn 4] 

Where 𝒔0 = {𝑠𝑛+1, … , 𝑠𝑛+𝑚} are the quadrature points and 𝒘 = {𝑤1, … , 𝑤𝑛+𝑚} the quadrature weights. 

Since this is the likelihood of a weighted Poisson regression, PPMs belong to the family of generalized 

linear models (GLMs) 77 and can be fitted using any package in R capable of fitting GLMs. We therefore 

used the basic function glm, and we calibrated our models as a ‘down-weighted Poisson regression’ 
(DWPR) 68 with second-order polynomials (except for categorical land cover), and elastic net 

regularization 78 for all covariates. 

DWPR with elastic net was executed using the R package glmnet 79. Elastic Net represents a 

type of regularization and variable selection mixing lasso and ridge regression approaches 78. It 

penalizes non-relevant predictors that might lead to overfitting by shrinking their effects or removing 

them completely. Elastic net regularization requires two parameters: alpha (α), which sets the balance 
between lasso and ridge, and lambda (λ), which sets the penalty coefficient level. For each evaluation 



fold, we set α to 0.5, and determined the optimal λ by testing 100 different values and selecting the one 
for which model fit performed best under a new 5-fold cross-validation (function cv.glmnet). 

Quadrature points were sampled randomly without replacement across the study area over a 

100 m regular mesh. Because log-likelihood convergence is model specific, we estimated for each PPM 

the appropriate number of quadrature points by running 10 repeated series of DWPR and gradually 

increasing the number of randomly sampled points from 5000 to 600’000 points following 68 (see Fig. 

S24). For weights implemented in model calibrations, small ones were assigned to observations (1e-

06), and given a study area of 294'994 km2, quadrature weights (QW) were calculated following 68:  𝑄𝑊 = 𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎 (𝑘𝑚2) 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑛)⁄   [eqn 5] 

Therefore, when n = 5000, QW ≈ 589.9; n = 10’000, QW ≈ 29.5; n = 20’000, QW ≈ 14.7; n = 50’000, 

QW ≈ 5.9; n = 100’000, QW ≈ 2.9; n = 150’000, QW ≈ 1.9; n = 200’000, QW ≈ 1.5; n = 250’000, QW 

≈ 1.2; n = 400’000, QW ≈ 0.7; n = 600’000, QW ≈ 0.5. 

Evaluation 

We evaluated the predictive performance of each PPM against the Flora Alpina (FA) test dataset by 

using 5-fold spatial block split-sampling tests 56. This approach involves preliminarily delineating 

independent spatial blocks to partition observations in geographic space. Here, for each species, we 

evenly partitioned its observations, quadrature points and Flora Alpina presences/absences into 10 

blocks and combined them to 5 folds (see Fig. S25 for more details). PPM performance was then 

evaluated using Flora Alpina presences/absences of the left-out fold, and models performing poorly – 

i.e. concurrently having a True Skill Statistic (TSS) and Boyce index < 0.3 – were removed 80–82. 

Projection 

For each species, retained calibrated models were projected for current and future scenarios across the 

study area at 100 x 100 m resolution, by setting the three bias covariates to a constant value of zero for 

all cells to correct for the fitted observer bias 48,69. Probabilistic projections were then averaged across 

CMIP6/LC scenarios to generate per species one current (year 2000) and four future habitat suitability 

maps (i.e. considering unlimited dispersal; 2050-SSP245, 2050-SSP585, 2080-SSP245 and 2080-

SSP585). Each set of species maps were further processed (a) according to previous literature 83 and (b) 

with simple dispersal models 84–86, to generate four additional suitability maps considering (i) no 

dispersal and (ii) realistic dispersal respectively (1’711 species were kept). 
When using species distribution models (SDMs), one major inconvenient, while identifying 

changes in the potential distribution of a species, is accounting for its dispersal limitations. Standard 

SDMs projections in future environmental conditions implicitly assume unlimited dispersal. Said 

differently, model predictions of future changes in the distribution of a species indirectly presume that 

the species can colonize any suitable environmental habitats/pixels regardless of its location. This is a 

problem as many geographic (physical barriers such as rivers, forests or mountains) and ecological 

features (species dispersal capacity) might impede the species from dispersing too far from its initial 

distribution. Therefore, the R package MigClim (function MigClim.migrate) 85,87 was for each species 

employed so that dispersal limitations could be considered within each of their future habitat suitability 

(HS) maps, i.e. generating four future HS maps considering ‘realistic dispersal’ (scenarios 2050-

SSP245, 2050-SSP585, 2080-SSP245 and 2080-SSP585). To that end, the five original projected HS 

maps of all species (current and ‘unlimited dispersal’) were used concurrently with the seed dispersal 
distances available for 1’711 species 84. Since MigClim can only process binary layers of 

presences/absences, HS probability maps of each species were converted to binary rasters using the best 



TSS threshold (mean TSS threshold of the retained calibrated models). MigClim was run by setting the 

key parameters as follows: 

(a) dispKernel considered a vector Pdisp(x) of dispersal probabilities calculated with a negative 

exponential dispersal Kernel 86,88: 𝑃𝑑𝑖𝑠𝑝(𝑥) = 𝑒−𝑥/Ɵ  [eqn 6] 

where x is a vector of distances ranging from 100 meters (study resolution) to the maximum dispersal 

distance of the species in meters with a 100 meters’ step, and Ɵ the median dispersal distance of the 

species in meters. 

(b) barrier considered a binary raster of physical barriers that was specific to each species type. Based 

on CORINE land cover 2000 65, barriers were defined if the feature’s area > 2 km2. In total, three barrier 

layers were generated, i.e. for species subsisting in (1) open, (2) mixte and (3) forest habitats. Although 

all layers had common barriers (water, snow and glaciers), layer (1) additionally included forests, while 

layer (3) included every land cover class except forests. 

(c) barrierType was defined as ‘weak’ (i.e. dispersal through pixel corners allowed). 

(d) lddFreq defines a frequency percentage of long-distance dispersal (LDD) events. It was set to 0.01 

(or 1%) 85,89. 

(e) lddMinDist defines the LDD minimum distance. It was automatically set following the minimum 

value requirement of the MigClim user guide 87. 

(f) lddMaxDist defines the LDD maximum distance. It was set according to each dispersal type 

following 89. 

(g) iniMatAge stands for ‘initial maturity age’. It was set to 2, which means that colonized cells may 
produce new propagules only after 2 model dispersal steps (or 2 years, i.e. once the plant hypothetically 

reached initial maturity). 

(h) propaguleProd defines the probability of propagule production for each age between the initial 

maturity age and full maturity. It was set to a vector defined as c(0.01, 0.08, 0.5, 0.92), i.e. a simple 

sigmoid function generally known to represent plant growth 87,90. 

(i) replicateNb defines the number of MigClim simulations. This was set to 3 to account for model 

stochasticity. 

 For each of the 1’711 species, the five original HS probability maps (current and ‘unlimited 
dispersal’) were intersected with (i) MigClim binary outputs and (ii) the original binary rasters. This 

provided new current HS maps informing concurrently on species occurrence probabilities and 

absences, which included four new future HS maps of (i) ‘realistic’ and (ii) ‘unlimited dispersal’ 
respectively. Furthermore, four additional future HS maps of ‘no dispersal’ were generated following 
83. To that end, the original current binary raster was intersected with the four new ‘unlimited dispersal’ 
HS maps, i.e. we only kept as suitable areas those concurrently occurring for present and future 

conditions. Finally, all final layers (i.e. 13 per species) were each aggregated by mean to a 1 km 

resolution, as stacked SDMs provide more meaningful predictions of species diversity when species 

distributions are aggreagated from high to lower resolution 19,57,91. 



Multifaceted diversity and uniqueness 

Diversity 

For current and each of the 12 dispersal scenarios, spatial taxonomic, phylogenetic and functional 

diversity were calculated as abundance-based diversity with Hill numbers and their recent extensions 
92–95. 

Taxonomic. For each 13 scenarios, we generated a community matrix summarizing the absolute 

occurrence probabilities of the 1’711 species per pixel across the study area. For each matrix, TD was 

calculated as abundance-based species diversity based on Hill numbers 92 with the R package hillR 

(function hill_taxa) 96. Here, we chose the order q = 1 (or the Shannon entropy H), i.e. an average 

sensitivity of the calculated pixel diversity to species absolute occurrence probabilities. 

Phylogenetic. Based on the detailed name list of our 1’711 modelled species (family, genus and 

species), a phylogenetic tree was computed using the R package V.PhyloMaker (function phylo.maker) 
97. V.PhyloMaker may generate large phylogenies for vascular plants based on updated versions of two 

plant mega-phylogenies 98,99. These phylogenies were built based on fossil records, molecular data from 

GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and phylogenetic data from the Open Tree of Life 

(https://tree.opentreeoflife.org/), including over 70 000 species of vascular plants. Using the phylogeny, 

PD was calculated for each community matrix based on extended Hill numbers to phylogenetic diversity 

(function hill_phylo) 93,96. Same Hill order was here kept (q =1), i.e. phylogenetic diversity of each pixel 

was here calculated with the phylogenetic entropy Hp; a generalization of the Shannon entropy 95,100. It 

is generally known that PD is not independent from TD 21,101. Therefore, the residuals of a linear 

regression of TD on PD (quadratic terms included) were extracted to generate new layers of relative 

phylogenetic diversity (rPD) 102–104. 

Functional. (i) Trait data was compiled from 33 individual sources comprising national data 

centers (e.g. InfoFlora, CBNA), European projects (e.g. OriginAlps, Fifth, Ecochange) and various 

sources from the literature and from collaborators (for a complete list, see Table S7). Mean plant height, 

leaf dry matter content, specific leaf area and leaf carbon to nitrogen ratio were extracted for our 1’711 
species (i.e. 4’308 traits). In total, 1’344 species were missing at least one trait (~35% of total missing 
values). (ii) Missing information in trait databases is a chronic issue in ecological studies 105,106. While 

removing species with absent information is considered a common practice 107,108, such practice is 

problematic if data are not missing taxonomically or phylogenetically at random (MCAR) 106,109. An 

alternative imputation is preferred and strongly recommended when trait data are indeed missing at 

random (MAR) 107,108. Our trait data had ~35% of missing values (2’536 measurements out of 6’844); 
i.e. an acceptable percentage under both MCAR and MAR assumptions 107,110. We tested both 

assumptions by applying preliminary MCAR (MissMech R package) 111 and multiple-imputation tests 

(R package mice) 112 respectively, and found our missing data to follow rather the MAR than the MCAR 

assumption (see Fig. S26). We therefore substituted missing trait values by implementing the MAR 

imputation method (function mice, method rf), which has demonstrated good performances of trait data 

imputation 107,108. (iii) Trait values were normalized from 0 to 1 and Gower’s distances were calculated 

thereof 113,114. Based on the distance matrix, functional dendrograms were generated from different 

algorithms with the R package cluster (function daisy) 115. We kept the functional tree whose cophenetic 

distance matrix was the most correlated with the initial distance matrix (UPGMA functional tree) 116. 

Finally, based on a Mantel test using 9’999 randomizations (R package vegan, function mantel) 117, we 

found the functional dendrogram to express ~78% of the initial distance matrix (r = 0.777; *** P-value 

< 0.001) indicating a strong conservation of the original functional space. (iv) Using the obtained 

functional dendrogram, FD was calculated for each community matrix based on extended Hill numbers 

to functional diversity (function hill_func) 94,96. Same Hill order was here kept (q =1), i.e. functional 
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diversity of each pixel was here calculated with a compromise index, i.e. at the interface between the 

functional attribute diversity and the weighted Gini-Simpson index 95,118,119. As PD, FD is generally not 

independent from TD. Therefore, the residuals of a linear regression of TD on FD (quadratic terms 

included) were also extracted to generate new layers of relative functional diversity (rFD). 

Uniqueness 

Using same data resources, we calculated for each scenario weighted taxonomic (WE), phylogenetic 

(PE) and functional endemism (FE) across the study area. Using our phylogeny and functional 

dendrogram three types of endemism were calculated for each community matrix. (1) Weighted 

taxonomic endemism WE is defined as the species richness in one pixel divided by the sum of the 

species ranges 24: WE = ∑ 1𝑅𝑡𝑡 ∈ 𝑇   [eqn 7] 

where 𝑹𝑡 represents the regional geographic range of species t (or number of pixels over the study area 

where its occurrence probabilities > 0). WE was calculated with the R package phyloregion (function 

weighted_endemism) 120. (2) Weighted phylogenetic endemism PE is defined as the sum of branch 

length in one pixel divided by the regional range of each branch on the spanning path connecting a set 

of taxa to the root of a phylogenetic tree 25: PE = ∑ 𝐿𝑐𝑅𝑐𝑐 ∈ 𝐶   [eqn 8] 

where 𝑹𝑐 represents the regional geographic range of branch c (or number of pixels over the study area 

where the branch occurs), and 𝑳𝑐 the length of branch c. PE was calculated with the R package 

phyloregion (function phylo_endemism) 120. (3) Weighted functional endemism FE was calculated 

based on our functional dendrogram with the same approach as PE: FE = ∑ 𝐿𝑖𝑅𝑖𝑖 ∈ 𝐼   [eqn 9] 

where 𝑹𝑖 represents the regional geographic range of the functional branch i (or number of pixels over 

the study area where the branch occurs), and 𝑳𝑖 the length of functional branch i. FE was calculated 

with the R package phyloregion (function phylo_endemism) 120. Relative phylogenetic and functional 

endemism (rPE and rFE) were generated following the same procedure and justifications as for rPD and 

rFD. Finally, we also calculated for each scenario phylogenetic (PR) and functional rarity (FR) across 

the study area following 121. Using our functional dendrogram, functional rarity (FR) 27 was calculated 

for each community matrix (preliminary converted to relative abundance matrix as specified by 121 

based on four distinct metrics using the R package funrar (function funrar) 121: (1) scarcity, (2) 

geographical restrictiveness, (3) functional distinctiveness and (4) uniqueness. (1) Scarcity (𝑺𝑡) defines 

the local rarity of a species: 𝑆𝑡 = exp (−𝑁𝐴𝑡 ln(2))  [eqn 10] 

where 𝑵 is the number of species and 𝑨𝑡 the occurrence probability of species t in one pixel. (2) 

Restrictiveness (𝑮𝑹𝑡) defines the regional rarity of a species: 𝐺𝑅𝑡 = 1 −  𝑅𝑡𝑅𝑡𝑜𝑡𝑎𝑙  [eqn 11] 



where 𝑹𝑡 is the number of pixels where species t occurs and 𝑹𝑡𝑜𝑡𝑎𝑙 the total number of pixels of the 

study area. (3) Functional distinctiveness (𝑫𝑡) defines the uncommonness of traits of a species 

compared to other species’ traits in one pixel weighted by their absolute occurrence probabilities: 

𝐷𝑡 =  ∑ 𝑑𝑡𝑗𝐴𝑗𝑁𝑗=1,𝑗≠𝑡∑ 𝐴𝑗𝑁𝑗=1,𝑗≠𝑡   [eqn 12] 

where 𝒅𝑡𝑗 is the functional dissimilarity between species t and species j, N and 𝑨𝑗 the number of species 

and the absolute occurrence probability of species j in the pixel respectively. (4) Functional uniqueness 

(𝑼𝑡) is the functional distance of a species t to its closest neighbor in a given region: 𝑈𝑡 = min(𝑑𝑡𝑗)  [eqn 13] 

where 𝒅𝑡𝑗 is the functional dissimilarity between species t and species j. Scarcity, restrictiveness, 

functional distinctiveness and uniqueness were calculated for each species and pixel. Unlike scarcity 

and distinctiveness, restrictiveness and uniqueness are only calculated per species. Therefore, to obtain 

values per species and pixel, each species’ relative abundances across the study area were weighted by 
its level of restrictiveness and uniqueness respectively. Total scarcity (𝑺𝑡𝑜𝑡𝑎𝑙), restrictiveness (𝑮𝑹𝑡𝑜𝑡𝑎𝑙), 
functional distinctiveness (𝑫𝑡𝑜𝑡𝑎𝑙) and uniqueness (𝑼𝑡𝑜𝑡𝑎𝑙) were each obtained over the study area by 

averaging values across species. As suggested by 121, each spatial metric were normalized from 0 to 1 

and functional rarity was obtained by calculating the average: 𝐹𝑅 =  𝑆𝑡𝑜𝑡𝑎𝑙+ 𝐺𝑅𝑡𝑜𝑡𝑎𝑙+ 𝐷𝑡𝑜𝑡𝑎𝑙+ 𝑈𝑡𝑜𝑡𝑎𝑙4   [eqn 14] 

Finally, using the same relative abundance matrices and our phylogeny, 13 phylogenetic rarity (PR) 28 

were calculated over the study region with the same approach as functional rarity using the R package 

funrar (function funrar) 121. 

System Conservation Planning 

Zonation 

Conservation prioritizations were run using the conservation planning software Zonation 4.0 122,123. 

Zonation ranks cells of a considered region from high to low conservation values, based on both the 

irreplaceability and complementarity of input ecological features 124,125. Zonation computes the 

conservation values of all conservation units (in this case raster cells) based on the distribution of all 

features, and iteratively removes cells with the lowest conservation values until all are removed 126. For 

each current and dispersal outcome, we ran multifaceted-based prioritizations to maximize concurrently 

the representation of species, phylogenetic, and functional distinctiveness. For this, our aggregated 

species distributions were used as Zonation features, and each species layer was weighted by the sum 

of its phylogenetic and functional uniqueness.  

We ran 52 prioritization scenarios (see Table S8 for parameters) i.e., for each current and 

dispersal scenario outcome (n=13), accounting for two prioritization allocation approaches (optimal 

reserve selection and reserve network expansion) and using the core-area Zonation (CAZ) and additive 

benefit function (ABF) prioritization algorithms. The ‘selection’ approach identifies the highest priority 
areas on the entire landscape without accounting for the current configuration of PAs. The ‘expansion’ 
approach considers the current reserve network of the Alps including PAs designated as IUCN I-II and 

Natura 2000 categories. In this approach, areas outside of PAs are ranked allowing for identification of 



the highest priorities outside the current PAs network that best complement protected biodiversity. For 

the main regional/transnational conservation strategies (Fig. 4), the ‘expansion’ approach was used 
together with the CAZ algorithm, which assigns conservation values by maximizing regional diversity 

and its complementarity i.e., by minimizing the extinction of features and protecting the worst-off ones 

(those with very little distribution remaining). For the main local/national conservation strategies (Fig. 

3), the ‘expansion’ approach was used together with the ABF algorithm, which assigns conservation 

values by maximizing local diversity hotspots and their complementarity i.e., by minimizing the 

extinction of local multifaceted richness. In total, 52 maps of conservation priority were generated (see 

Table S9 for summary). 

Post-analysis 

In line with the post-2020 global framework of the Convention on Biological Diversity (CBD), we 

chose the top 20% of the current, 2050 and 2080 reserve network expansion simulations (Fig. 4), to 

correctly project a conservation overlap that would extent the present PAs network to ~30% of the 

European Alps’ area. For each percentage of expanding PAs over the study region, we calculated the 
cumulative representation of species, phylogenetic and functional branch occurrence probabilities, of 

their range, and of species functional/phylogenetic rarity (Fig. S1a-b). For this purpose, aggregated 

SDM occurrence probabilities of each species were employed and each phylogenetic and functional 

branch’s spatial occurrence probabilities were calculated following 127. While the probability of 

occurrence of terminal branches are inferred from that of the species, the probability of occurrence of 

internal branches in each cell is calculated as: 𝐵𝑖𝑗 = 1 −  ∏ (1 − 𝑃𝑛𝑗)𝑚𝑛−1   [eqn 15] 

where 𝑩𝑖𝑗 is the probability of an internal branch i in cell j, m the number of descendant species 

originating from the internal branch and 𝑷𝑛𝑗 the probability of descendent species n to occur in cell j. 

Therefore, for each percentage of expanding PAs over the study region, we calculated the cumulative 

representation of (1) species, (2) phylogenetic and (3) functional branch occurrence probabilities, of (4) 

species, (5) phylogenetic and (6) functional branch distributional range, and of species (7) functional 

and (8) phylogenetic rarity. (2) The cumulative representation of phylogenetic diversity (PD) was 

calculated following 127: 

𝑃𝐷 (%) =  1∑ 𝐿𝑖𝑘𝑖=1  . ∑ [(𝐿𝑖  .  ∑ 𝐵𝑖𝑗𝑞𝑗=1∑ 𝐵𝑖𝑗𝑄𝑗=1 )]𝑘𝑖=1 × 100  [eqn 16] 

where k is the number of branches of the phylogenetic tree, q the cells covered by PAs (%), Q the total 

number of cells in the landscape, Bij the probability of occurrence of branch i in cell j and L is the length 

of branch i. (3) The cumulative representation of functional diversity (FD) was calculated the same way 

but using the functional branches information. (1) Based on the previous equation, the cumulative 

representation of species diversity (TD) was calculated as: 

𝑇𝐷 (%) =  1𝑁  . ∑ [ ∑ 𝐴𝑗𝑞𝑗=1∑ 𝐴𝑖𝑗𝑄𝑗=1 ]𝑁𝑖=1 × 100  [eqn 17] 

where N is the total number of species, q the cells covered by PAs (%), Q the total number of cells in 

the landscape, Aij the probability of occurrence of species i in cell j. (4) The cumulative representation 

of species endemism (WE) was calculated following 26: 



𝑊𝐸 (%) =  1𝑁  . ∑ 𝑠𝑖𝑆𝑖𝑁𝑖=1  × 100  [eqn 18] 

where N is the total number of species, si the number of cells covered by PAs (%) where the species 

occurs, and Si the total number of cells where the species occurs. (5) The cumulative representation of 

phylogenetic endemism (PE) was calculated following 26: 

 𝑃𝐸 (%) =  1∑ 𝐿𝑖𝑘𝑖=1  . ∑ [𝐿𝑖  .  𝑒𝑖𝐸𝑖]𝑘𝑖=1 × 100  [eqn 19] 

where k is the number of branches of the tree, ei the number of cells covered by PAs (%) where the 

branch occurs, Ei the total number of cells where the branch occurs, and L is the length of branch i. (6) 

The cumulative representation of functional endemism (FE) was calculated the same way but using the 

functional branches information. (7) The cumulative representation of species functional rarity (FR) 

was adapted from [eqn 1] and calculated as: 

𝐹𝑅 (%) =  1𝑁  . ∑ [∑ 𝑅𝑖𝑗𝑞𝑗=1∑ 𝑅𝑖𝑗𝑄𝑗=1 ]𝑁𝑖=1 × 100  [eqn 20] 

where N is the total number of species, q the cells covered by PAs (%), Q the total number of cells in 

the landscape, and Rij the functional rarity of species i in cell j. (8) The cumulative representation of 

species phylogenetic rarity (PR) was calculated the same way but using the phylogenetic rarity of each 

species. 

Additionally, we define ‘Expanded PAs’ as the 2- or 3-time overlap of the top 20% reserve 

expansion of current, 2050 and 2080 prioritizations (Fig. 4). The 95th elevation values percentile was 

calculated per species by extracting the values of a Digital Elevation Model (DEM) with species 

observations (Fig. 2; see also Fig. S20). Finally, percentage of gains and losses (Fig. 2) were calculated 

for each species based on their range, that is the number of pixels of the study region that the species 

occupies, as follows: 

|𝑅𝑎𝑛𝑔𝑒𝑓𝑢𝑡𝑢𝑟𝑒−𝑅𝑎𝑛𝑔𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡|𝑅𝑎𝑛𝑔𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 100  [eqn 21] 
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Appendix: 

 

Figure S1a. Current and future protected areas (PAs) network cumulative expansion in the 

European Alps when maximizing local diversity for realistic plant dispersal. First, second and 

third row depict the functional, taxonomic, and phylogenetic dimension, respectively. Panels 

describe the cumulated protection of plant multifaceted diversity and uniqueness in function 

of the reserve network expansion (% of the study region) for each current and future 

conservation simulation. Yellow percentages display the amount of feature loss between the 

current and 2080 prioritization. Current PAs of the European Alps cover ~20% of the study 

region and are displayed in striped green. Results of expanding the reserve network by 20% 

are displayed over the panels in blue. 

 

 



 

Figure S1b. Current and future protected areas (PAs) network cumulative expansion in the 

European Alps when maximizing regional diversity for realistic plant dispersal. 

 

 

 

 



 
 

Figure S2a. Change in multifaceted diversity and uniqueness by 2050 for SSP585 and 

realistic plant dispersal.  



 
 

Figure S2b. Change in multifaceted diversity and uniqueness by 2080 for SSP245 and 

realistic plant dispersal. 

  



 
 

Figure S2c. Change in multifaceted diversity and uniqueness by 2080 for SSP585 and 

realistic plant dispersal. 

  



 
 

Figure S2d. Change in multifaceted diversity and uniqueness by 2050 for SSP245 and 

unlimited plant dispersal. 

  



 
 

Figure S2e. Change in multifaceted diversity and uniqueness by 2080 for SSP585 and 

unlimited plant dispersal.  



 

 
 

Figure S3. Plant species richness distribution by land cover type for two land cover products 

(ALARME-ECOCHANGE and VOLANTES-HERCULES) and timelines (current and by 2050 

for the SEDG/SSP245 scenario). Kruskal-Wallis tests were here applied for each panel (***p-

value < .001 for all): Kruskal-Wallis X2 = 36’256.01, 49’156.6, 32’335.8 and 41’398.6 (upper-
left, -right, lower-left and -right, respectively). All pairwise comparisons were run with post-hoc 

Dunn tests and displayed following a letter-based representation (*p-value > .05). 



 
 

Figure S4. Land use change (%) for different types of agricultural land cover abandonment 

(Permanent crops, Pasture and Cropland), for VOLANTES-HERCULES (left panels) and 

ALARME-ECOCHANGE (right panels), and their associated carbon scenarios (by 2050 and 

2080 for SEDG/SSP245 and BMBU/SSP585 scenario). For each future scenario, land use 

change (%) was calculated as the pixel proportion of new land cover types succeeding 

previous permanent crops, pasture or cropland. 

  



 
 

Figure S5a. Species range shifts by 2050 for SSP585 and realistic plant dispersal. 

  



 
 

Figure S5b. Species range shifts by 2080 for SSP245 and realistic plant dispersal. 



 
 

Figure S5c. Species range shifts by 2080 for SSP585 and realistic plant dispersal. 

 

  



 
 

Figure S6. Current and future local conservation needs in the European Alps for SSP585 and 

realistic plant dispersal, under ZONATION simulations of reserve network expansion. 



 
 

Figure S7. Current distribution of multifaceted diversity and uniqueness in the European Alps. 

First, second and third row depict the functional, taxonomic and phylogenetic dimension 

respectively. Middle right raster plot shows Pearson’s correlation relationships between all 
maps. TD, rPD and rFD: taxonomic, relative phylogenetic and functional diversity; WE, rPE 

and rFE: weighted taxonomic, relative phylogenetic and functional endemism respectively; PR 

and FR: phylogenetic and functional rarity. 

 

 

  



 
 

Figure S8. Distribution of current phylogenetic, functional diversity and endemism in the 

European Alps. Here are depicted the absolute version of the four diversity features. 

 

  



 
 

Figure S9. Distribution of multifaceted diversity and uniqueness in the European Alps by 2050 

for SSP245 and realistic plant dispersal. 

 

  



 
 

Figure S10. Pearson’s correlation relationships between all multifaceted diversity and 

uniqueness maps generated for the study.  Correlations are assessed for a total of 104 

diversity and uniqueness maps. Each x and y axis label includes in total 13 maps; i.e. per 

current and 12 future timeline/SSP/dispersal scenarios. Overall, general patterns follow the 

correlation relationships found above. TD, rPD and rFD: taxonomic, relative phylogenetic and 

functional diversity; WE, rPE and rFE: weighted taxonomic, relative phylogenetic and 

functional endemism respectively; PR and FR: phylogenetic and functional rarity. 

 

  



 
 

Figure S11a. Current and future local conservation needs in the European Alps for SSP245 

and realistic plant dispersal, under ZONATION simulations of optimal reserve network. 

  



 
 

Figure S11b. Current and future local conservation needs in the European Alps for SSP585 

and realistic plant dispersal, under ZONATION simulations of optimal reserve network. 

  



 
 

Figure S11c. Current and future regional conservation needs in the European Alps for 

SSP245 and realistic plant dispersal, under ZONATION simulations of reserve network 

expansion. 

  



 
 

Figure S11d. Current and future regional conservation needs in the European Alps for 

SSP585 and realistic plant dispersal, under ZONATION simulations of reserve network 

expansion. 

  



 
 

Figure S12. Distribution of the current protected areas (PAs) network of the European Alps 

and it future (top 20%) regional expansion for SSP585 and realistic plant dispersal. 

  



 
 

Figure S13. Summary of species range protection for current (green) and expanded PAs 

(blue) in 2050 under SSP245 and realistic plant dispersal. Expanded PAs represents the top 

20% regional expansion of the reserve network of the European Alps. CCC: current 

conservation of current species range, CCF: current conservation of future species range, 

FCF: future conservation of future species range. Friedman tests were applied here for each 

panel to compare the median values of the three boxplots. All pairwise comparisons were run 

with post-hoc Nemenyi tests and displayed following a letter-based representation (p-value > 

0.05). 

  



 
 

Figure S14. Summary of species range protection for current (green) and expanded PAs 

(blue) in 2050 under SSP585 and realistic plant dispersal. 

  



 
 

Figure S15. Summary of species range protection for current (green) and expanded PAs 

(blue) in 2080 under SSP245 and realistic plant dispersal. 

  



 
 

Figure S16. Summary of species range protection for current (green) and expanded PAs 

(blue) in 2080 under SSP585 and realistic plant dispersal. 

  



 
 

Figure S17. Spatial coverage and protection statistics of the European Alps’ reserve network 
(IUCN categories I-II and Natura 2000) for the six main countries member of the Alpine 

Convention. Left panel depicts the area of the reserve network (in %) covered by each country. 

Right panel depicts the percentage of area protection relative to the countries’ area. 
  



 
 

Figure S18. Observation density of colline (upper) and montane species (lower) undergoing 

high future range gain (left) and loss (right) by 2050 for SSP245 and realistic plant dispersal. 

High gains and losses are defined as > 75th quantile of all species’ range gains and losses, 
respectively. Green and purple upper contour lines summarize the observation density of 65 

(n = 82,133 records) and 56 species (n = 29,762 records) respectively. Green and purple lower 

contour lines summarize the density of 61 (n = 144,776 records) and 94 species (n = 72,642 

records) respectively. 

 

 

  



 

 
 

Figure S19. Distribution density of our original (a) and refined species observational dataset 

(b) across the extended European Alps. (A) shows the target group observation density of the 

original observational dataset (i.e. 6'655'163 observations accurate to 11.1 meters for 4’250 
species). (B) shows the observation density of our refined observational dataset (6'603'305 

unique observations for 3’167 species), i.e. the whole species observations used for model 
calibration. Distribution of density was aggregated at 2 km resolution for better visual 

representation and log transformed. 

 

 

 

  



 
 

Figure S20. Methodological framework used to generate the FA independent test dataset at 
100 m resolution. Here is presented an example for Soldanella alpina. The initial FA raw 
distribution of Soldanella alpina (A) is summarized within 54 expert-based native political 
units (green is regional presence) 1 and was intersected with the 5-95% percentiles elevation 
interval of Soldanella alpina (B). This interval here corresponds of an elevational range of 
~1’016 - 2’453 m. It was calculated by extracting values of the DEM over Europe (EU-DEM; 
https://www.eea.europa.eu/data-and-maps/data/eu-dem), aggregated to 100 x 100 m 
resolution, with the 8’841 species observations. Final output was a refined independent binary 
distribution of Soldanella alpina from which we inferred 100 m presences and absences, 
sampled n times afterwards for independent evaluation (C). Here, as an example, 100’000 
presences and absences were plotted respectively. 
  

https://www.eea.europa.eu/data-and-maps/data/eu-dem


 
 

Figure S21. Pearson correlation tests between every environmental predictor (except 

categorical land cover) and bias covariate considered in our models. Climate included growing 

degree days (GDD), annual precipitation (BIO12), temperature (BIO4) and precipitation 

seasonality (BIO15). Soil included soil nitrogen (NITROGEN) and substrate composition 

(CALCAREOUS%). The bias covariates included observation density (OBS_DENSITY), 

distance to roads (DIS_ROADS) and cities (DIS_CITIES). 

  



 

Figure S22. Environmental cluster distribution and frequency in observations across the study 
region. (A) describes the distribution of the 20 environmental clusters over the study area 
obtained with the R function wsl.ebc 2. Those were obtained at 100 m resolution based on our 
four climate and two soil variables. (B) summarizes the species observation frequencies per 
environmental cluster regarding the refined observational dataset. Here, 100’000 species 
observations were sampled randomly without replacements over the cluster map. We see that 
the sampling design of our refined observational dataset is environmentally biased towards 
cluster 2 and clusters 5 to 12, i.e. the environmental space of Switzerland (~50% of the refined 
observational dataset). 

  



 

Figure S23. Species observation frequencies per environmental cluster before (A) and after 
EBC (B) for the 1248 corrected species across the study region. Here, 100’000 non-corrected 
(A) and corrected species observations (B) were sampled randomly without replacements over 
the cluster map. We see that the sampling design in (A) is, as the refined observational dataset, 
environmentally biased towards cluster 2 and clusters 5 to 12, whereas in (B), observations 
frequencies were balanced across environmental clusters based on their respective log(area). 

  



 

 

Figure S24. An example of PPM log-likelihood convergence for Soldanella alpina. Here are 

shown the PPM convergence tests for models including as land cover the ECOCHANGE (A) 

and HERCULES categories (B). To obtain the adequate number of quadrature points, 

convergence tests were applied before model calibration. For this, 10 preliminary repeated 

series of DWPR were run, each one gradually increasing the number of randomly sampled 

quadrature points (i.e. 5000, 10’000, 20’000, 50’000, 100’000, 150’000, 200’000, 250’000, 
400’000, 600’000). Below solid red line indicates number of quadrature points chosen by the 
test (e.g. in a, n = 600’000); i.e. position on the x axis where standard deviation of the log-

likelihood values < 10% of the standard deviation found in x = 5000. Dotted blue line indicates 

range of log-likelihood values for x = 5000. Dotted red line indicates the last position on the x 

axis where standard deviation of the log-likelihood values > 10% of that of found in x = 5000. 

Note that if no solid red line appeared (e.g. in B), a high number of quadrature points (n = 

1’000’000) was chosen by default following 2. 

  



 
 

Figure S25. Example of spatial block split sampling for Soldanella alpina. Following 3, its 8’755 
observations (here highlighted in darker colors) were evenly partitioned into 9 blocks of 5 folds 

spatially stratified (~2 blocks per fold; numbers are indicated) using species observation 

coordinates, partitioning around medoids (PAM) clustering and the R package cluster (function 

pam) 4–6. This allowed the number of observations to be spatially and numerically balanced 

within each independent fold. It is important to note that, even though the number of blocks 

was set to 10, this number may slightly vary per species conditional on the best balancing 

strategy of the PAM algorithm. Fold 1 (purple), 2 (red), 3 (orange), 4 (blue) and 5 (green) here 

contains 1’755, 1’538, 1’536, 1’976 and 1’950 species observations respectively. Sampled 
quadrature points and Flora Alpina presences/absences (here highlighted in lighter colors) 

were assigned to each independent block using k-nearest neighbor classification and the R 

package class (function knn) 7,8. For every species and models (PPM), the same number of 

Flora Alpina presences/absences as quadrature points were sampled, to ensure balanced 

repartitioning among folds. 

  



 
 

Figure S26. Preliminary MCAR (A) and multiple-imputation tests (B, C). MCAR test was run 

with the TestMCARNormality function (MissMech R package) 9. Multiple imputation tests were 

run 5 times with the mice function (mice R package) 10 using the random forest method 

(following 68). (A) shows R output of the TestMCARNormality function. MCAR-test is negative 

with P-value > 0.05. Missing trait values are therefore not missing completely at random. (B) 

shows the distribution frequency plot of four trait values (Height, SLA - specific leaf area, 

LDMC - leaf dry matter content and C:N - carbon to nitrogen ratio). Blue line represents the 

distribution of observed trait values whereas the five red lines represent the distribution of 

imputed values from each five multiple-imputations. (C) follows same color legend and shows 

same distribution as individual points (or Stripplot). The very similar distributions between 

observed and imputed data found here gives strong evidences that missing trait values follow 

a MAR assumption 10. 

  



Table S1. Description of extinct species for current and future scenarios. Information on their 

respective elevation class, soil substrate and vegetation type is also given. 

 

  

SSP Timeline Dispersal Extinct Species 
Elevation 

Class 
Substrate Type 

 
Current 

     
SSP245 2050 Realistic  

    
SSP245 2050 Unlimited 

    
SSP245 2050 No 

    
SSP245 2080 Realistic  Antirrhinum latifolium Montane Calcareous Herbaceous 

SSP245 2080 Unlimited Antirrhinum latifolium Montane Calcareous Herbaceous 

SSP245 2080 No Antirrhinum latifolium Montane Calcareous Herbaceous 

SSP585 2050 Realistic  Iberis saxatilis Sub-alpine Calcareous Herbaceous 

SSP585 2050 Unlimited Iberis saxatilis Sub-alpine Calcareous Herbaceous 

SSP585 2050 No Iberis saxatilis Sub-alpine Calcareous Herbaceous 

SSP585 2050 Realistic  
Antirrhinum latifolium, 

Iberis saxatilis 
   

SSP585 2050 Unlimited 
Antirrhinum latifolium, 

Iberis saxatilis 
   

SSP585 2050 No 
Antirrhinum latifolium, 

Iberis saxatilis 
   



Table S2. Complete list of sources of species observations. 

 

Sources Observations Count Contribution 

AAAAA 18903 0,245316177942023 

ACBOG 2 2,595526402603e-05 

AIPHY 686 0,0089026555609283 

ALOBO 3 3,8932896039045e-05 

ANSES 43 0,000558038176559645 

ASTER 1303 0,0169098545129586 

ATFHA 362 0,00469790278871143 

AVENI 57 0,000739725024741855 

BDMZ7 96186 1,24826651280386 

BDONF 7393 0,09594363347222 

BIOTO 42 0,00054506054454663 

BMDZ9 34265 0,444678560925959 

CAT07 7488 0,0971765085134564 

CBNA 206809 2,68389109897962 

CBNME 158 0,00205046585805637 

CBNMED 431630 5,60153530577767 

CENP 118 0,00153136057753577 

Cerabo 374 0,00485363437286761 

CHLAU 1703 0,0221009073181646 

CINCL 4 5,191052805206e-05 

DISEQUALP 30289 0,393079496042212 

ECODI 9063 0,117616278933955 

ECOME 281 0,00364671459565722 

ECOSP 1165 0,0151189412951625 

EHB 11772 0,152772684057213 

ENGRE 1104 0,0143273057423686 

ESITP 34 0,00044123948844251 

EVINE 128 0,00166113689766592 

FLAVI 468 0,00607353178209102 

FRAPN 14 0,00018168684818221 

GBIF 2242347 29,1003542114882 

HERZO 2 2,595526402603e-05 

INFLO 1692 0,0219581533660214 

InfoFlora 4027105 52,2622867677728 

JORDE 86 0,00111607635311929 

KarstData 26900 0,349098301150104 

LAVAN 62 0,00080461318480693 

LEPJH 102 0,00132371846532753 

LOPAR 6 7,786579207809e-05 

MNHN 51 0,000661859232663765 

NAENV 28 0,00036337369636442 

NEOT 60 0,000778657920780901 



ONF 4738 0,0614880204776651 

PNE 14713 0,19093989980749 

PNM 335 0,00434750672436003 

PNRLU 647 0,00839652791242071 

PNRMB 537 0,00696898839098906 

PNRQ 371 0,00481470147682857 

PNV 238 0,00308867641909757 

RECAL 10 0,00012977632013015 

RESBO 2847 0,0369473183410537 

RESCB 654 0,00848737133651182 

RNLAV 171 0,00221917507422557 

RNPLA 1 1,2977632013015e-05 

SAGEE 32 0,00041528422441648 

SBCOU 21 0,000272530272273315 

SBDRO 37 0,000480172384481555 

SBF 242 0,00314058694714963 

SBNF 193 0,0025046829785119 

SDETB 239 0,00310165405111059 

SERAN 62 0,00080461318480693 

SHNPM 12 0,00015573158415618 

SIGDA 60 0,000778657920780901 

SLL 1 1,2977632013015e-05 

TUXEN 10 0,00012977632013015 

TWW 419115 5,43912024113478 

UAMSJ 3057 0,0396726210637869 

UCLBL 12 0,00015573158415618 

UCOMA 104 0,00134967372935356 

UNBES 2336 0,0303157483824031 

UNDST 126 0,00163518163363989 

UNJOF 14443 0,187435939163976 

UNPRO 1479 0,0191939177472492 

UPAXI 3827 0,0496653977138084 

WILLNER 52125 0,676459068678407 

X 8 0,00010382105610412 

ZER 22475 0,291672279492512 

 

  



Table S3. Statistics of the original (4’250 species) and refined observational dataset (3’167 
species). 

  
 

  



Table S4. List of predictors used in the EIV mapping. The description and the source of each 

predictor is provided. 

    

Layer name 

Abbreviatio

n Description Sources of the layers 

DEM_laea_100m DEM 
Digital elevation 

model 

https://www.eea.europa.eu/

data-and-

maps/data/copernicus-land-

monitoring-service-eu-dem 

DEM_aspect_laea_100m Aspect Aspect 
This manuscript, using 

function terrain and R 3.6 

DEM_TPI_laea_100m TPI 
Topographic position 

index 

This manuscript, using 

function terrain and R 3.6 

DEM_TRI_laea_100m TRI 
Topographic 

roughness index 

This manuscript, using 

function terrain and R 3.6 

DEM_TWI_SAGA_laea_100m TWI 
Topographic wetness 

index 

This manuscript, using 

SAGA-GIS 7.2.0 

OPENSTREET_h20_dis_laea_1

00m 
H20 Distance to water 

https://www.openstreetmap

.org/#map=11/47.0056/7.97

40 - Layer calculated with R 

3.6, python 3.6 and GDAL 

GLIM_bedrock_types_laea_100

m 
Geology 

Soil geology 

reclassified in three 

groups (gradient of 

CaCO3) 

12 based on 13 

    
  

https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.openstreetmap.org/#map=11/47.0056/7.9740
https://www.openstreetmap.org/#map=11/47.0056/7.9740
https://www.openstreetmap.org/#map=11/47.0056/7.9740


Table S5. Spearman rank correlations between observed and predicted EIVs based on repeated 
split‐sampling (Split) and five‐fold block cross‐validation (CV) tests in the European Alps. 
EIV-R = soil pH. EIV-N = soil nitrogen, EIV-F = soil moisture. 

 

  

  



Table S6. Reclassified VOLANTES-HERCULES land cover from 16 to 10 classes. 

 

HERCULES land cover Reclassified land cover 

Built-up area  Built-up area  

Arable land (non-irrigated)  Arable land (non-irrigated)  

Pasture  Pasture  

Semi-Natural vegetation Semi-Natural vegetation 

Irrigated arable land  Irrigated arable land  

Permanent crops  Permanent crops  

Forest  Forest  

Sparsely vegetated areas  Others 

Beaches, dunes and sands  Others 

Inland wetlands  Others 

Glaciers and snow  Others 

Heather and moorlands  Others 

Salines  Removed 

Water and coastal flats  Removed 

 

 

  



Table S7. Complete list of sources of trait data 

 

  



 

Table S8. Chosen Zonation parameters 

 

Zonation setting file (.dat) 
 

Zonation feature list file (.ssp) 
 

removal rule = 1 (CAZ) or 2 (ABF) weight = sp PU1 + sp FU2 

warp factor = 100 14 alpha = 1 (default) 

use mask = 0 (selection) or 1 (expansion) bqp = 1 (default) 

mask file = I-II-2000_IUCN.tif bqp_p = 1 (default) 

 
cellrem = 0.25 14 

1 Phylogenetic Uniqueness 
2 Functional Uniqueness 

Parameters in blue were chosen by default, i.e. connectivity settings off.  



Table S9. Description of the 26 priority maps generated for each CAZ and ABF algorithm 

 

  Year Emissions Dispersal 

IUCN I-II reserves 

+ Natura 2000 

1 Current 
  Yes 

2 Current 
  No 

3 2050 SSP245 no dispersal Yes 

4 2050 SSP245 no dispersal No 

5 2050 SSP245 unlimited dispersal Yes 

6 2050 SSP245 unlimited dispersal No 

7 2050 SSP245 realistic dispersal Yes 

8 2050 SSP245 realistic dispersal No 

9 2050 SSP585 no dispersal Yes 

10 2050 SSP585 no dispersal No 

11 2050 SSP585 unlimited dispersal Yes 

12 2050 SSP585 unlimited dispersal No 

13 2050 SSP585 realistic dispersal Yes 

14 2050 SSP585 realistic dispersal No 

15 2080 SSP245 no dispersal Yes 

16 2080 SSP245 no dispersal No 

17 2080 SSP245 unlimited dispersal Yes 

18 2080 SSP245 unlimited dispersal No 

19 2080 SSP245 realistic dispersal Yes 

20 2080 SSP245 realistic dispersal No 

21 2080 SSP585 no dispersal Yes 

22 2080 SSP585 no dispersal No 

23 2080 SSP585 unlimited dispersal Yes 

24 2080 SSP585 unlimited dispersal No 

25 2080 SSP585 realistic dispersal Yes 

26 2080 SSP585 realistic dispersal No 
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